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torch iZ 4% 4 1.8.1, CUDA it 4~ & 11.1, DUIE-
Net 5 7 fifi | Adam {1k #% , Batch Size 4 6,
Epochs 7 400; YOLOv8-HD fifi F Adam f:fk %% ,
Batch Size & 8, Epochs 4 300,

1 BRI s A B PPl b ASBIF9E R ] 2

B A A 1 1 RO, 045 BSR4 (Entropy ) 3407

%25 (MSE) (W fH {5 M L (PSNR) K MG o
8 4 (UCIQE ) Fl 25 #4 AR AL 1 45 £ (SSIM) , ik 4k
FRAR RS AT ROPPAG R A 4l 15 PR 78 R AR T
L5 5T DA K5 2% R AR R SRt T 24k
FERITFAN R R .

T H ARG A Y B PEAR v, ASBIE 5T R RS
3 (Precision) . 73 [ % (Recall) .F1 Score . FE4E
J£1{H (Mean average precision, mAP) 17 Z%f
1 (Model parameters) F171 5. & (FLOPs ) £ & £
DU e RIS RUAER | 3X SEF8 bR BE A% AT O Al A5 1Y
B R DU AE B | H AR e v BE T ZE A TR DL St
SRR, BARR IR AL T 248 5 P IR &
4.2 FTLLSRLE
4.2.1 DUIE-Net RIS 5545 5 K 43 Hr

R TS UE AR AL Bz AR 77, ¥ DUIE-Net
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B Y 5 UDCP. Fusion'® | FUnIE-GAN™ |
LiteEnhanceNet"" . PUGAN"? | Shallow-water**'
TCTL-Net ** #E47%5 Hil 5

% 2 ¥4 4 W], DUIE-Net /£ UCIQE 1 SSIM
PEREFE A LRI 5, R AR MG e A2
FIOR LR 1Y S 2 32 U BH LA KT 5 5
FE B A AEAT 55 h A RS ). R
HEHS B 7 1], DUIE-Net RE 5 A 25 b 38 71 & 1)

P T i, ORUE 20 5 1) 3 5 MR I R, LY
& 25 (MSE ) Rl {15 W [ (PSNR)fH R 2 i 4
FERIZASE R A ) MG S R R 22 N, HLEHR
AR . AR AY UCIQE Fi1 SSIM {H . Jiz ke
R B (5 | 25 5 TN 25 A8 (LR T T A
P, BEAS 7E 203 G5 2 10 IR, PR 5 R ) &
SR SRR

®2 BEBESHXLL

Tab.2 Comparison of parameters for each model

FoEAY iR W 4 L KT EGSTsE T ZEFAR IR

Models MSE PSNR/dB UCIQE SSIM
UDCP 0.027 5 17.300 5.230 0.668
Fusion 0.006 4 22.789 5.222 0.872
FUnIE-GAN 0.020 3 17.740 4.691 0.549
LiteEnhanceNet 0.007 1 22.996 5.027 0.834
PUGAN 0.0177 18.165 5.941 0.562
Shallow-water 0.030 5 18.866 5.394 0.658
TCTL-Net 0.005 1 24.242 5.154 0.847
DUIE-Net 0.006 3 22.276 5.941 0.888

Hi &1 8 AT LA | AN [ 455 0 7 S B A5 38 i
oY R I AETE i % 22 %, UDCP  FUnIE-GAN
PUGAN 7E EUQ 3G 58 77 AR ARSI, 3k
Ll G il = R A Y R 40 15 ; TCTL-Net I
LiteEnhanceNet [} 3 5 R 5 4 4 — 26 | REWS 1E —
FEFRE I ER  a, (H X SR R AR R 5T
AT 1) 2550 SR I AS BHLARL 384 55 5 %) A% AR AT SR AR 7
TEZME SR, FEEG DR EREAR
g W15, 5 e T B A nT e AT B ; Fusion
1 Shallow-water 2 8 g % 75 &8 43 K145 h B S 3¢
U BB BT M 3 BT 5k 3 A 1 UK R S
H7E R i DL T, G B 21 €038 38 3 50 ) T 5
1, FEE O EUR BB E R B, R ETIRA R
H AR IR, 52 e A ) B SR B AR B A 2
T, DUIE-Net 7E & Hil 48 b5 b RIS | eI 3L
Shy Y- i b 1 5 VAR 1% 5 3 RN T BE R kG it
5eR Ak L — 38 T B£8R, DT R T AR L S
7K G o BT 2 55 R AR Y Ok BE 7 T 3%
PRARLEE A (5, BE A5 AT S50 B O RS rp i
BURFAE , 384 0 G0 T O RS RO > T

J 22 A 3 A B B T H A U0 Y 808 R
.
4.2.2 YOLOv8-HD RIS I 45 5 e 4Bt

R T SR AS B R B9z A BE T, ¥ YOLOVS-
HD # % 5 Faster R-CNN'*' | SSD, YOLOVS5 .
YOLOvV10.YOLOv11 #A7%F ik % .

% 9 &7~ T Faster R-CNN . SSD . YOLOVI10s.,
YOLOv11s, YOLOvV8-HD 7 A~ [a] & 4% | % 1530
g A R BAE S T 0.5 I TRIIAE . A
& i Al LA H, YOLOvS-HD #5558 75 B H bR il
AU BRI S5 3 5o h R IL 5, K 25 A e
AIAE HTEZ Hinfl BbrE S 5trh iz 847,
AEAE— 5 1 Jmy BV - >4 s 25 82 40 A1 iR T
i, & A B B bRl R B 4, ke U PERE I B F
o Aol X — G Al g SR &2 42 5
MIRFIERAERE A B A O, SR Ze0F 58 /T DL
D7 AT ek (D)5 SRR S AL R
AU P B A B A5 68 7 5 (2) 38 4o BHh 1 i
i A N A I i BB e S i 1<
it , A SRR R AU TE 2 H s s h IR e
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Fig. 8 Enhanced effect comparison of different models

3 B4 % W, YOLOVS-HD i Recall i}y
0.838, 5 HoAth 455 Y 5 WL W Jonn 347 4, 3R Wi B AL A
il 2] H Ar i 0B e, AR H AR £
FEE R B/ NP AR I B, B A AR Fl
{0 0.894, 4 T it A5 A58 B 1) 52 v AKF, R W
YOLOVS-HD 7¥ Precision 5 Recall Z [A] $.31] T %%
T4 -5 , BB 7E CRUE R B 19 [R) B, A RO 2>
Tk TR A (4G O . 45 7E Precision 45 b1 I,
YOLOVS-HD % i# T YOLOvSm, {H H 7F Recall
M mAP b i L ik b 10X — 22 B, T H
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YOLOVS-HD A X} 38 H 9 3K 31 55 2 2% i A
T 2 B85 i A LR O e s R R Y [ B, B L
SR B L
43 HRLLIG
4.3.1 DUIE-NetH R4 il 5256

#£ DUIE-Net £5 13 @il 52 56 v, 36 H 2 60 A%
IERL PR IE IR &2 5 1 i A B 45 5 1R Sy BE oA
I (Basic) , 1% A B4 A6 2K PR &L (Loss)  JC 4 JRith
b & FRBIH (PAM_N) 75 42 Jrpith fb 4> 3B AR
(PAM) . £ Z AL (UDCP)
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Fig. 9 Prediction results of each model
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Tab.3 Comparison of parameters for each model

Dark

1 Models ~ K5#0% Precision 4 [il*¢ Recall FI1{F1-Score “FXJKEE mAP/%  B%E Parameters ¥ 15128 FLOPs/G
Faster R-CNN 0.434 0.867 0.580 0.827 41 755 286 355.16
SSD 0.820 0.300 0.430 0.490 14 812 195 24.60
YOLOv5n 0.900 0.832 0.865 0.913 2503 139 7.10
YOLOVS5s 0.863 0.761 0.809 0.876 9111923 23.80
YOLOvSm 0.965 0.779 0.862 0.886 25045 795 64.00
YOLOv10n 0.898 0.698 0.785 0.829 2 694 806 8.20
YOLOv10s 0.944 0.751 0.837 0.876 8035 734 24.40
YOLOv10m 0.788 0.758 0.773 0.820 16 451 542 63.40
YOLOvlIn 0.938 0.810 0.869 0.904 2 582 347 6.30
YOLOvlls 0.940 0.828 0.880 0.900 9413 187 21.30
YOLOvlIm 0.912 0.805 0.855 0.902 20030 803 67.60
YOLOv8-HD 0.959 0.838 0.894 0.924 11 103 060 27.90
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i & 10 7] LA Y, Basic+Loss+PAM+UDCP
21 T 2R BRI AT AU AR AR AR A2 7 R 38 B O
PR O, B I JE K R R B B S o, I
FPETHRME PR A EUR AT . R 4 B R W]
Basic+Loss+PAM A9 2H & 15 2 JF 54 42 UIEB |-
()P RE H8 b 2 R A A , (LA o ) 348 o RIS A A
BOR AR —E A R, TR AE K55 ROR A

oA T A LS A B R . A UDCP £
Y5 , .48 MSE . PSNR ., SSIM #8 #5417 BT T F L (H
SR G A B G R AR e ROR B i, e
HAE F: 55 IR 5 DL KA 5 R 5 T 3R B
DG, 575 1 5 B VG RR AL S B ., 3k X i 282
() B bR 45 S B,
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Fig. 10 Enhancement effects of different modules
R4 FREERITEE RN
Tab.4 Impact of different modules on model performance
A BiriR2e VAP 5 1L KT UGB PR SERAR L
Models MSE PSNR/dB UCIQE SSIM
Basic 0.017 1 19.183 5.553 0.616
Basict+Loss 0.017 1 19.250 5.565 0.634
BasictLosstPAM_N 0.006 0 23.775 5.590 0.879
Basict+Loss+PAM 0.004 7 24.129 5.489 0.895
Basict+Loss+PAM+UDCP 0.006 3 22.276 5.941 0.888

4.3.2  YOLOvS8-HD 71 il 52 560

£ YOLOv8-HD #5& %1 Ji it 52 5 ofr , fifi JH]
YOLOvVSn 1F Ay J AR 7Y | 4K YK 48 il FasterNet 5%
e CoordAttention 155 &k /N B A5 5 91 3k (Small
Target Detection Head ) fl ShapeloU it 2k pR%K

F 5 HEFM, YOLOV8n % 45| A FasterNet
(FN) .CoordAttention(CA) ./)» H #4312 (Small
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Target Detection Head, STDH) HI ShapeloU
(SIoU) 451 2K PR AR RE 2 2. 25 2 TR AU (Y 8 AR B
T YOLOv8n, YOLOv8-HD TF Precision.
Recall,F1 fl mAP 4 /> SCHEF5 br b 43 il 42 7+ T
4.2%.6.8%.5.7%.5.5% , i5 B e K-, R BZAR
Y REAL T O 435 5 v A 38 1 [R] ), S AR S 1) o
PRASIPERE
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RS AREB B ERER RN

Tab.5 Impact of different improvements on model performance

el Ll ES FEJEES FI{H Rl
Models Precision Recall F1-Score mAP/%
YOLOvV8 0917 0.770 0.837 0.869
YOLOvV8+FN 0.960 0.814 0.881 0.920
YOLOV8+FN+CA 0.974 0.788 0.871 0.892
YOLOV8+FN+STDH 0.902 0.817 0.857 0.878
YOLOvV8+FN+CA+STDH 0.954 0.814 0.878 0.912
YOLOV8+FN+CA+STDH+SIoU 0.959 0.838 0.894 0.924

4.4 DUIE-YOLO B & I81F 358

H T RAGFEK T R b S A 5t it % H AR
o W ASE AU Mk g 1Y 5 WA, AR BF 9% % 11 T DUIE-
YOLO Bt & B ik 52 55, HAR S8 7 2 R - K
it B v 1 69 Tk ELAA BRI KR AR 1R R D
IR UG AR e B R AP L B A5 AR
G, IR L8 1 A TE M X S BRI A S
S SLONESuy i L e v TN ek e PN
T4 I 2547 1) DUTE-Net [&] 45 38 55 45 80 rp | 38 5
TZIE R (AR A AL B, SRR X 07 1) T BT 1 i [R5 8
PR AR | IT T 5 Gn ORI B B2 R ik S 1 37 T A0
L BIEAT TR AN N TARVE , B bR T T A
— Pk, SENEBEE ST X 2 R AR A
YOLOv8-HD H{iF 5 A Fl YOLOv8n J 1 A5 74 i
A7 #E 20 5L, 50 5 o AR A Ok TR G s 4R R
YOLOv8n A 7 (Raw+YOLOvVSn) | J5 1A 53
45 1 YOLOVS-HD it i #% Y (Raw+YOLOVS-
HD) . DUIE-Net 34 5 £ 4% 5 F1 YOLOv8n JE A
% (DUIE-Net+YOLOvV8n) . DUIE-Net 3 5 % 5
£ A YOLOv8-HD it #f #i %! (DUIE-Net+
YOLOv8-HD)4 Fi 4 & , LAXT b 43 B A [A] A5 He 20
A F R PERE 2 5

B 11 JEoR T ARl 20 4 78 DU A AL 7 50 1Y
TIUI X} Eb 25 B A0 45 2R S A 58 (Dark) (BRI H BR
(Blurred target) . 2% {4 %4l ( Green color cast) Fli
2kt fl (Cyan color cast) . MEIHAT LAF i 7EAK
Ot B SRR S TSR 2 4 454, DUIE-

Net fE 08 A7 R 5% H FRAFAE , it 81 0 19 T S ML
T N5 T, YOLOVS-HD 7E I 3L fill b pE— 2 42
FET B HARRRIRG B . R 6 Edn ik — bk
B, DUIE-Net fZ 5 YOLOvV8-HD F k(4 & H
i K6 W BE 5 4% : Raw+YOLOvV8n Ny L4 4,
Raw+YOLOv8-HD #I DUIE-Net + YOLOv8n M|
JEAE LR A A BERE b T e T AN ] A e R AR e
27 A s # A e -, Horh Raw+YOLOv8-HD
M4 A B T 0.783 A Rk i %, (H A [B] R4
k1 0.575 , ik W12 2 5 A 7R XoF AR 1] 45 1 5 0
FARSE, BRI D H K™ B s DUIE-Net+
YOLOV8-HD 4 & 7E 4k M e L Rt , #H 1L
TR AE2H 4, H Precision $2 7+ & 0.724, Recall $2
T120.782, mAP M 0.586 3 25 511 0.822, F1 43 %kt
M 0.574 $£ F+ = 0.752, {H DUIE-Net+YOLOVS-
HD 41 4 R i 28 L Raw+YOLOvS8-HD 4 &1,
AT BB R 5 5 1 R AR T H AR AT L
PE (B AT B 75 S RRAE ST H2 08 H AR (A3 s 5
(A TR 2 15 R R B £ ), S BORAGIEN

MK S , DUIE-Net 5 YOLOvS-HD fY4%5 &
FEO AT PRI SR AT A AG I A B ) 28 IR AR
AVER L FEE 20K TR Sl T B fE (4
AT AR IR B, 3X — 25 SRS IGUE T 2RI A
PEACI A R o AR R IK TR B A i) 8325 iy i
PR T HE S %,
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Fig. 11 Detection performance comparison with different module combinations
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Tab. 6 Detection performance comparison with different module combinations
(iR itk FEJUES F11{H RS
Module combination Precision Recall F1-Score mAP/%
Raw + YOLOv8n 0.655 0.511 0.574 0.586
Raw + YOLOvV8-HD 0.783 0.575 0.663 0.700
DUIE-Net + YOLOv8n 0.722 0.648 0.683 0.705
DUIE-Net + YOLOv8-HD 0.724 0.782 0.752 0.822

5 5

AHFEHE T — I T S 5 Y KT B
o} R A6 9% DUIE-YOLO, 5 78 fit th /K F ¥R
B rhEs LA PG o ek [ A 44 v E BrAS P g
e & 1% 4% 5% )7 1l , DUIE-Net £ 8 4 . F* TCTL-
Net 15 % /£ UCIQE F1 SSIM J5 i 43 Il &5 1 0.787
#10.041, {57 MSE fll PSNR /i 2, X & H T
DUIE-Net 5| A T UDCP ¥ #1355 )7 vk , i 454 A
M EG S22 G — e 122 5, fETH Al e 5
2% B UDCP £ 3t 1% i} i) MSE 1 PSNR {5 5
TCTL-Net 5 8AH T, (H7E 0 77 1, 34 UDCP
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YOLOvS-HD #H [t T YOLOv5m #& %! 7F Recall .
F1.mAP J7 1 & H 5.9%.3.2%.3.8%, 1E Precision
J7 T YOLOvSm £ %Y H YOLOvVS-HD 5 0.6% , {H
YOLOv8-HD # A f{ Parameters A1 FLOPs &
YOLOvSm AU iy — 2 | BEAR T B8 Y &2 2% JiE
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T SE A Fr 42 5, {H & Parameters 11 FLOPs & AN
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DUIE-YOLO: An image enhancement-based underwater squid target
detection algorithm

CAO Liling , HU Haoyu , CAO Shougqi
(College of Engineering Science and Technology ,Shanghai Ocean University ,Shanghai 201306, China)

Abstract: To address the decline in target detection accuracy caused by blur and color deviation in
underwater images and to improve the accuracy and robustness of squid detection in complex underwater
environments, this study proposes an underwater squid detection algorithm named DUIE-YOLO based on
image enhancement. The algorithm adopts a cascaded framework of “enhance first, detect later” consisting
of the DUIE-Net enhancement module and the YOLOv8-HD detection module. The DUIE-Net module
significantly improves image quality through color correction, multi-scale feature fusion, feature
restoration and enhancement, and dehazing optimization. The YOLOvS8-HD detection module combines the
FasterNet network, a small-object detection head, the CoordAttention mechanism, and the ShapeloU loss
function to optimize feature extraction and small-object detection accuracy. Experimental results show that
DUIE-YOLO outperforms the original YOLOvVSn in four key metrics: Precision, Recall, F1-score, and
mAP, with improvements of 4.2%, 6.8%, 5.7% and 5.5%, respectively. Joint experiments demonstrate
that the combination of DUIE-Net and YOLOvV8-HD achieves a 40.3% increase in mAP, a 10.5% increase
in Precision, a 53% increase in Recall, and a 31% increase in F1-score compared to the baseline (Raw+
YOLOvV8n) , proving the algorithm's significant cascaded optimization effect. The study indicates that
DUIE-YOLO effectively mitigates the performance degradation caused by poor underwater image quality
through the synergistic optimization of image enhancement and detection modules. This research provides a
high-precision solution for target recognition in complex underwater environments, offering significant
application value for marine biological monitoring and resource development.

Key words: underwater squid detection; object detection; image enhancement; multi-scale feature fusion;
YOLOVS
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