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Fig. 1 Regional division of the Kuroshio Extension
Zone and Subtropical Countercurrent Zone

F1 BALXFFRANRIESEXRHMIETES S
Tab.1 Geographic range distribution of the Northwest Pacific and two areas of high eddy kinetic energy

TF5% X 35k Research area £5 i Latitude £ % Longitude

PaAL R WNP 20°N~50°N 130°E~180°E
SRIAEA X KE 28°N~42°N 140°E~180°E
Bl R X STCC 20°N~28°N 130°E~180°E

®2 ARREREFIESHHSEIT LS

Tab. 2 Statistical comparison of eddy characteristic parameters in different regions

WX ZH S e (AEs) “UET (CEs)

Research area Parameters Anticyclonic eddies Cyclonic eddies
H B Number generated/f> 9206 9912
% 6 Amplitude/cm 9.09(9.04) 9.20(11.22)
M2
@iﬁ}(%# 221% Radius/km 79.01(33.24) 75.60(32.21)
M shHE Eddy kinetic energy/(m?/s?) 0.04(0.05) 0.05(0.10)
Fiir Lifespan/J&] 9.64(8.47) 8.88(6.56)
A i Number generated/}> 3780 4022
. . {5 Amplitude/cm 12.28(11.35) 13.78(15.21)
S i X
gﬁ;ﬁﬂﬂﬂl_ f-4%2 Radius/km 81.09(33.74) 79.98(33.79)
W BIHE Eddy kinetic energy/(m?/s?) 0.06(0.07) 0.08(0.14)
Fir Lifespan/J& 9.28(7.54) 8.88(6.02)
A i Number generated/}> 3205 3435
R IE Amplitude/cm 6.61(4.59) 6.18(4.46)
AR 1 X 2[:4% Radius/km 84.75(34.11) 79.64(31.80)
STCC W BhEE Eddy kinetic energy/(m?/s?) 0.03(0.02) 0.03(0.02)
i Lifespan/J&] 8.61(5.90) 8.09(4.75)

T B (PR 28) oRTEAR S A (55N o

Notes: Mean values (standard deviation)shown outside (inside) the parentheses.
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The left column in the figure shows cyclonic eddies, and the right column shows anticycloniceddies.
B2 AIXFERBVRIESEXNRERE.FEGRNEMEFESH
Fig. 2 Distribution of eddy amplitude, radius, eddy kinetic energy, and lifetime for the Northwestern Pacific and two
regions of high eddy kinetic energy
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a and b are eddy generation numbers; c and d are eddy extinction numbers.
B3 SHER R SHER M E B THAE 1< 1P Wi N = E 5

Fig. 3 Spatial distribution of the generation and extinction numbers of the cyclonic eddies and

anticyclonic eddies on a 1°x1° grid
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Fig. 4 Spatial distribution of amplitude, radius, and eddy kinetic energy of the cyclonic eddies and
anticyclonic eddies on a 1°x1° grid
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a, b are eddy trajectories that move the starting point of the eddy trajectory to the origin; ¢, d are motion trajectories with eddy lifetimes

greater than or equal to 26 weeks.
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Fig.5 Trajectories of cyclonic eddies and anticyclonic eddies moving with the same starting point and with lifetimes
greater than or equal to 26 weeks
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o(t)//N(t), uisthe mean value, o is the standard deviation, and N is the data amount.
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Fig. 6 Interannual and monthly-scale variations in eddy amplitude, radius and eddy kinetic energy
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a, b are SST anomalies; ¢, d are sea surface wind speed anomalies; e, f are sensible heat flux anomalies; g, h are latent heat flux
anomalies; The extremes of eddy-causing anomalies in the composite plots are shown in the lower right corner, the axes in the composite
plots are the normalized distances between the center of the eddy and the edge of the eddy by a factor of 2R. The dashed line on each plot is
the one eddy contour labeled with the effective eddy radius.
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Fig. 7 Anomalies in SST, sea surface wind speed, sensible heat flux and latent heat flux due to
warm eddies and cold eddies
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regression fits between parameter anomalies and sea surface temperature anomalies (SSTA) , where the slope coefficient s quantifies the
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Fig. 8 Anomalies in sea surface wind speed, sensible heat flux, and latent heat flux induced by warm/cold eddies
versus sea surface temperature anomaly
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Tab. 4 Coupling coefficients of eddy-induced anomalies for warm and cold eddies in different regions and seasons

(warm eddies outside parentheses, cold eddies inside parentheses)
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Analysis of air-sea parameter anomalies associated with mesoscale eddies in
the Northwestern Pacific

LONG Fengxin, GAO Guoping , MIAO Qiaolong, BIAN Sijin
(College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China)

Abstract: Mesoscaleeddies play a pivotal role in oceanic material transport, energy exchange, and climate
variability modulation. To understand their impacts on air-sea interactions in the Northwestern Pacific, this
study analyzes satellite altimeter and scatterometer data (2006—2009) using eddy identification and
composite analysis techniques, focusing on over 30 000 warm and cold eddies.Results demonstrate distinct
air-sea parameter anomalies: warm (cold) eddies exhibit positive (negative) anomalies in sea surface
temperature (SST, 1.64/-1.58 °C ) , surface wind speed (0.72/-0.58 m/s) , sensible heat flux (19.60/
-39.25 W/m?) , and latent heat flux (40.98/-55.03 W/m?) ; these atmospheric responses show strong linear
coupling with SST anomalies, with maximum coefficients of 0.49/0.50 m/(s-°C) (wind), 19.57/20.04 W/
(m?-°C) (sensible heat), and 33.61/32.96 W/(m?:°C) (latent heat). Regional and seasonal variations in
anomalies are modulated by background SST gradients and wind fields through vertical heat transport
efficiency and surface roughness modification; synergistic mechanisms involving Ekman pumping, mixed
layer adjustment, and boundary layer stability further contribute to these patterns. This study underscores
the need for eddy-resolving coupled models to quantify mechanistic contributions and provides critical
insights for improving air-sea parameter forecasting in eddy-active regions.

Key words: mesoscale eddies; air-sea coupling; composite analysis; Northwestern Pacific
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