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Fig. 1 Location and field view of the Barrow Station(Source IGS site map)
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Fig. 4 Technical route of GNSS-R technology for soil moisture retrieval
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Research on soil moisture inversion in Arctic coastal areas in summer based
on ground-based GNSS-R: A case study of Barrow Station in Alaska

KONG Degang, CHANG Liang
(College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China)

Abstract: In order to verify the reliability of GNSS-R technology in soil moisture monitoring in the Arctic
coastal areas, the experiment used GNSS-R technology to carry out soil moisture inversion research at
Barrow Station in Alaska in summer, and took the soil moisture in the ARM program and SMAP of the US
Department of Energy as reference values, respectively, to analyze the variation characteristics of soil
moisture at Barrow Station from 2015 to 2023. The results show that the GNSS-R data from 2015 to 2023
have good consistency with the SMAP and ARM soil moisture data in the long-term trend, and the
correlation between the interannual results is 0.54-0.76 and 0.54-0.81, respectively, and the root mean
square errors are 0.02-0.06 and 0.01-0.06, respectively. From June to September in 2015 to 2023, the soil
moisture inverted by GNSS-R is most consistent with the SMAP and ARM observations in the medium-to-
high humidity range (0.4-0.6 cm?*/cm?® for SMAP and 0.20-0.35 g/g for ARM). Under low and high
humidity conditions, although the GNSS-R inversion results can still capture the rising trend of soil
moisture, there is a certain deviation from SMAP and ARM, which may be related to the increase in
summer rainfall. This study confirms the reliability of GNSS-R technology in inverting soil moisture along
the Arctic coast.

Key words: GNSS-R; soil moisture; Alaska; multipath effect
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