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 E: ST 20142018 4F % 2021—2024 4K 7= F2 50 AV EA LN XS KR ( Litopenaeus vannamei) 758 L3
1A 7K BT A T AR, 6 AL 0 (TIND L AUl (TP) L3 PE % (AP) (i 25 0 (NO,-N) LA 25 L (NO, -N) 2 A
(TAN) L2574 5 (COD) (i B (T) 1 pH S5 78 N 119 JC /K BT S50, 1 8 T 3L 1 1 3838 U 4% (Temporal
convolutional network, TCN) Fll| T421& 24 2450 ( Gate recurrent unit, GRU) [) TAN 1 COD 7K i fii i A= 180 . ¢ %%
F4H# FC-TCN-GRU PR A AL, IR F TON X B8 FRAF 54T $2 BURN R 24 A B, T4 b B 19 %58 i A GRU
WA, I J il ) 4 7% $% 2 (Fully connected layers, FC) B S AU &5 5L . X445 #4719 FC-TCN-GRU BRI 47
WAL, 485112 22 (MAE) (3977 15222 (MSE) Flgk 2 R 40 (R?) 26X TAN T v 43 531 24 0.255.0.089 £10.861 5 7
X COD W TR0 4350 2k 1,750 ,4.840 10332, KA 5 PCA-LSTM JEAC LSTM A48 GRU A5 X TAN Al
COD By T 45 JL b 47 He 85, 45 5t 7R - FC-TCN-GRU #E R4 TAN Fil COD 36 b 1) F A BE 0 T Hofl 3 F st

R FE TAN T o R B 5 {H X% COD 14 T &4 R i A5 5 1)
KGR PLANTEEXTIR s K BRI 5 R s [TTHEIERR 0 ; s BN 4%
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A (TAN) FIfL 2% 75 4 i (COD) 45 7K i 45 b /2
S W o WU A R T X0 MR 5% K i 1Y) S B 2%
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14 % 4% )2 (Fully connected layers, FC) , #2115 T
1 ZJ0/K TS AT (MW QPP) 7 | FH il
FI AR K R R i 4 4> K i 2 %80 (pH . DO, COD Al
TAN) , 25 R R W2 B AU L T 40 i) Josiiy | B
AR . LIAE 3l 25 A RNN A ik
J5 B Dempster-Shafer(D-S) , #2117 RNNs-DS £
R T30 [ SRR AR ) 44K 248 (COD
pH.TP f1DO), Ji:Xt kb T SVR I BPNN % 2 i
0 WFFEF BT, RNNs-DS R E K B il - HA
B e Y HER PR R AR e P

TUAR IS [B] 7 510 A8 d 25 5 ) AW S, DT REEAIR
22735 i ) [B) 7 5) T A AR R R . Y U S0 A ik
IR S AR KA B DO T TAN 30 45 5 1)
PE , B 8 BH ) K o Bt DD %0 o T4 P 8L 3R
BT IR c BERIGE AT EH A, PR
AR5 2 7 BIGRU FU AR A BRI L
SOy fifR RS 2y 2 1 £ S b 9 v A N s
HF A BSCH R T A T, X 5 SR FH /N AR e A
TR 86 FH ) 7 WL EA TR M, CAO 51O HE s 1
FRBHE It I 0 5 A S| O 9T, 7E GRU B AL R 5 |
AT TR I HLE] A58 A0 5T 47 b 4 3K Y 91 3
5o

AR5 4 1 4 FC-TCN-GRU 7K Ji 19 Vi
AR s ek BB Y ( Temporal convolutional
network, TCN) (B R 1iF 2 HUBE 71 T GRU 1 4E
LA Be ST ARZE G, FE I FC K = 4R R Ak e
S Ry B 2 TN 5 S, LA XS 3R 5 7K A4 Y TAN A
COD ZZ L AT M .
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1.1 ##ERE

SRR U IR 0 I T 2R 5 XL P
IK P IR A EAL 2014—2018 4F F11 2021—2024 4F
(R B LK R W, e 832 40 . AEFRAE A, 45 5
KX 3 A4~ FLAA T o] U 5 K it 3 L 422 D o 7K R T
7 H pH 1A 0N 2 pH . DO 5 R ALK FE Y
[ S 565 = i 43 S0 A v R R 7k (HY 003.4—
91) B M ik B 2 B 9 A 55 AF 43 O O B2 7 (GB
11894—89) . 44 [% ik 1| 43 Ot 0t i (GB7479—
87) 4 F WML 43 6t B 1k (GB7493—87) | 45 4b
A3 B (HI/T 346—2007) FIERR 53 66
7:(GB 11893—89)ll| £ COD . TN, TAN .NO, -N ,
NO,-N TP Fl AP %4845
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12,1 Bl eSS

Shapiro-Wilk 5 5 & T 48 09 i 7 48 11 &=
(HEF J5 I REAE) 5 B8 1E 25 40 A B 22 (H A AR
Kok o I FRIR < 5 B I N TE 25 o0, AR A
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(Mahalanobis distance ) X} 7K Ji £ 4 E 471 53] 5 i
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W TN BE B 5 B ST P 7 22 R B G R
W o
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FE TG EAARIE AR AN 1, RIS E S Bk
B AR R A AEARL A B[] B, ) FH 3k S it
BB AT B A A
122 H—Afehbs

A — AL Re i 52 = 6 B2 T R B A A e T B
W BEE — o T2 B b 4 v A AL R ORG J3E Rz AL g
J3 ARHIFFE SR 0 — b R B 22 AR AL
(Min-Max normalization) , 1% J7 12 22 S5 11F {6 ikt
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W
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— (3)
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1.3 EARER [ 3fe s .
1.3.1 IG5 GRU iﬁrm{ammro@ulzrﬂ {HkEIT 0,

GRU MR A3 2 EZE 0] ]
(Update gate) FI 5 & [ ] (Reset gate) , WK 1, &
BTTRYME (2) 72 0 2] 1 2Z 8] E B 1, R 3o

ACZ R OR B AR B B TR AR
z, =0 (W*[h,_,x]) (4)
Ko sigmoid PREL; W AACEHRE s b, ARG
— I 2] () BRI 5 o, A X IS 2] ) A 5 SRy S

SRR, TR A RN
= a(W,* ho_yx,1) (5)
B, GRU AR BHT 1R B 1 4 (E S
TS 220 P BB IR 28 -
h, = tanh (W *[rh, ,,%,]) (6)

FoRN Z HifE B

h=(l—z)'h,,1+z'fL (7)
e PR R, R AR BRI S

By A hy
| e -1
| O EH | 1=
I Update gate |
| " N |
I 1l N
| 11 o] |
I I Reset gate | h,
I 1l
| 0 1l 0 : tanh
I Ll I
I 1l
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T

_/

BEl1 GRU#ZILEH
Fig.1 The core structure of the GRU

132 BRI TCN AR T -

TCN B Z5 K an 18 2 f s , AL & 4 5k PR 1 r=14+ > 2 (k- 1) (8)
(5% 22 BZ TON 1Y EBA5 M o SRERIBIIHE oo, B RS2 I35 B b R 3L kP
73 TCN REMEA Rt AL LA R P SR, R OREE e, o 22 ol
TR TR B AL A M . TCN RE 53 fin Jgk sz B

Linh
Output
FfALR T | REBLI I
Dropout Dropout
i i
AR PR AL MR R AL
Rectified linear unit Rectified linear unit X L&
i i Ix1 Conv
EEREIY DENEREIY
Weight normalization Weight normalization
i i
PR AR . 5K AR AR
Dilated causal convolution Dilated causal convolution
A
Input

Fig.2 Residual block of TCN
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133 2#E#EZFC
N E FCRIZE RN E 3 Brs , g A i) i x
I 1R AR WSE B M A e, AR IR AT
VIl 00 b I3 o T pR A o 8 AR R R AR
e, A5 205 1) Ry
y =0 (W +b) (9)
1.4 $HERIE
T o VR i AR A A A5 R o A A T
JEEHE , T H Bl A FC-TCN-GRU 1R & R
2T BE AT A AL O A Y S Y
A o 7 S5 50N AR AN T
Lag,(X,) =X, (k=1,2,3-T)  (10)
s Lag, (X, ) Ry B 6] 9 51 XA sF (8] 25 ¢ 1) & B s

| Fe) 2
| Hidden

JE A 50 R S AT )25 s X ORI sk i R A K
T Ry e K Je B[]
1.5 FC-TCN-GRU %!

AW TCN 5 GRU LA LS 4, # 2
TAN 351 B R | H: 3= B 4E Ry AN &) 4 7 7, A Y
LA IE S FR . BT, R A B B
i A TCN )2 il ik WAL KN R 3, 975Kk K72 1Y
BRI AT T sz BP A 55 L O
X T ASHRRAE AT T B AT i R 4 B 40 03 5 TCN
Ab BRI OB R A GRU, GRU #% 14N [i] 2 11]
Je A AT A, 3 Ay L fdi 1S GRU AN 23 B[R]
A BN B DARTAR S, IR 2 08 B ARG B
AL B T — P00 ; B PR il i 4 26
FRAE BB Sk 5 23 HA P 371

B3 =&EEER
Fig.3 Fully Connected Layer
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Fig. 4 Structure of FC-TCN-GRU

http://www.shhydxxb.com



13 EHAE A T FC-TCN-GRU BB 4 FLAA TS IR IR FE K Fh 22 SRk 2 7 S A F

109

JK B TTIAS Y T
Establishment of water quality prediction model
Bl
Data collection
/ \
Bl LA 2 A3 Fof e i J A
Data preprocessing Construct temporal lag features
VI B4
Partitioned data set
BSHAE

Hyperparameter tuning

YIZFC-TCN-GRU#5 1
Training FC-TCN-GRU model

v

FC-TCN-GRUA R
FC-TCN-GRU model testing

Es5 #EETRE
Fig.5 Model establishment process

1.6 EEESEFEMR

155 Y88 2 B (Hyperparameters ) ] T #5 ifl 2%
2 b AR Bl R AL () 24 2] BE ) Nz Ak RE
A5 B JH A 2 80U 2% ) K (Learning
rate, Ir) Al [ & 2 K/ (Size) o

il B Z 5 I If-1 71217 1Y Hyperband 5.7
E—EE BN A REILES A S, Bk
FEANIE 6 Fim

6 H 2 R BN S B 6 i 22 4 TE 1Y) 5%
U8 s b RS AR B I S B G Ll s, N B
KIEAGEEEL; B Ry BT05R 5s  M TG R 4 p
ESEAGEGr MBS A TR ELY
IR i AR, TR WIIE IR s p, o M i
AP S B B B 5, R S A A R
o
1.7 PCA-LSTM.E & LSTM. & & GRU # &
SofE v

% 18 ) S S S LEE S 45 1 BF 5, 5 FC-
TCN-GRU B8R F [7] — i 4 | 43 51l 157 PCA -
LSTM 4% LSTM A A GRU AL, B 75 5 4
WFFE4R Y FC-TCN-GRU # 8Y JE 47V RE X 1 23
Mro I X — b #, B E AR AS [RI AR 78 8 b
HAH A s S i A e 25 57, AT S8HIE FC-TCN-
GRU BB (4 i 4R 1

| sn=liedR), B=Gsnut DR |

I

_[B w
P{i (s+l)}

,r=Ru~

6 Hyperband Ei%ifiTE
Fig. 6 Hyperband algorithm process
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Hdadi A PCA-LSTM BLAYRT , gy 4 X B it
17 PCA FEYE , PRl B AL J5 R AEE R F 1A S A&
A (R DA LSTM i1 7YI14% . KL FC-TCN-
GRU.LSTM #I GRU #5544 A 15 55 5, PCA-
LSTM & 10,
1.8 fRFEIREISHAP

SHAP i iof 25 16 B A 45 1E X #0000 235 2R 1) o7
HR , X BILAS 27 > B30 1) 0 45 R A T i

ISIMIF[=[S[-1)
= X f"i(x‘i)_
s (Fli) | F! [ st Fsuta)

)] (11)
s, WERAE i B9 Shapley {8 ; 1FI A FRAE BB
F (i} HERFHE SR AT RERARIEZH B 155 5 S
N F L RRFIE SRS 5 f.(x,) 0 S FRRFAE A A5 R T
T3 fo () — () JHEAE (42 ELATHEAE S O
DU RSB0 B 1 PR DTIK

FET U R REAR R

M
G(2) =@, + > ¢ (12)
i=1

A 2e (0, 1) oA B RRAE 2 75 o) A5 280 T A5 5
Bk s M R i AR AEE; @ AR B H R @, AR §
fY) Shapley 1H .
1.9 #EENEMEIER

AHIGE R 8 48 0% 22 (MAE) " 27 5%
2% (MSE)"™ P 2R RIA X2 22 (E,)™
XA (3L REHEA TPEA . MAE FIMSE % H T3
Aty T (R L S =2 [ ) 158 25 K/ 5 R BB e b
PRI AL B 36 DL 25 TR BE 5 B, e 45 1 )

W TN (RS2 75 Ak T B L A -

1 m
MAE = — Y|y, - | (13)
m
1 1 2
MSE = — > (y, = ")) (14)
i=1
n r_ = 2
Rz:zi:l(% y)2 (15)
2::1(%_5/)
E,: yi_yi (16)
y.

A em o REARKG y, 5 (I 2 SR 5y R
o 4 I 20 A T AEL s 5 A AEAS P35 {H

2 ZER

21 EXMLHRIE

fifi FH SPSSPRO X} £5 4l 5 17 1E A A 56 (3%
2HIE7), 45 5% 7% TAN Fl COD £ B g # 1 (P<
0.05) , R I AT A} TAN 55 COD B A4 IE 4
Zir
22 BiREFSEHMERTFHBEXES T

XRS5 PR F- R AT A S 2 A, vl HEBR A G
IR ARt , A B T A AU D00 45 R ASE R s o 45
A, T R IUAR 28 B S B B RORS B R %
A, 8 T, 5 TAN S IE AR An A
TN.AP .NO,-N.DO.TP F1NO, -N, & i 41 % 1
FeA5A . T .pH A COD. AHCHE B HEIF : NO, -N
TP.TN.AP.COD NO,-N .pH.T#flDO. 5 TAN
AN E B KB 54 NO,-N TP \ TN , AP flI
COD; [F LA 15 , 5 COD AH e ¥ i K 135 45 K
TN.TP.T.DO FlpH.

x1 EHDOW
Tab.1 Principal component analysis
s FAIE(E Ll S E A
Component Eigen value Percentage of variance/% Cumulative/%
1 2.098 85 20.988 48 20.988 48
2 1.914 38 19.143 81 40.132 29
3 1.358 56 13.585 56 53.717 86
4 1.118 24 11.182 39 64.900 24
5 1.021 52 10.215 22 75.115 46
6 0.770 23 7.702 33 82.817 80
7 0.655 65 6.556 54 89.374 34
8 0.497 31 4.973 08 94.347 42
9 0.393 26 3.93263 98.280 05
10 0.171 99 1.719 95 100.000 00
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Tab.2 Normality test results
e SRR FHE brifE2E P 353 Shaniro-Wilk
Factor Median Average value Standard deviation Skewness Kurtosis P
SR
2R COoD/ 10.220 10.439 5.429 1.847 10.735 0.888
(mg/L)
PN Y=
HFHRRTAN, ) o 1.291 1.565 3.081 11.238 0.635
(mg/L)
ok i
40t
S5t §
© E
< ar < 301
z 2
5 g
o 2} m
= 1t =
3 2 1o 23 3 -2 -1 0ol 1 2 3
A IEA{E Expected normal value HIEEIEAME Expected normal value
(a) TANIEZ PR 45:Q-QIEl (b) CODE?&‘@W%Q-Q@
TAN normality test Q-Q chart COD normality test Q-Q chart
7 EXSHQ-QHE
Fig. 7 Normal distribution Q-Q diagram
1.0
T T
0.8
pH| -0.11 | pH
0.6
DO | -0.19 0.43 DO
- 0.4
coDp | 021 | -0.17 -0.021 COD )
— - 02
TP | 0.083 0.25 0.062 0.28 TP ‘
-0
TN | 0.34 -0.17 | -0.078 0.48 0.39 TN
- -0.2
AP [-0.0075 0.33 0.059 0.053 0.80 0.16 AP
-0.4
NO>-N | -0.11 -0.31  -0.028 0.016 @ -0.16  0.090 -0.14  NO;>-N
-0.6
TAN | -0.075 -0.11 -0.0040 0.17 0.39 0.35 0.33 0.17 TAN
-0.8
NOs-N | -0.069 = -0.16 = -0.029  0.065 0.016 0.23 0.012 0.29 039  NOs-N
-1.0
T pH DO COD TP TN AP NO>-N TAN NO;-N
B8 KEEFHIEXES T

2.3 SHAPHERERRLER

e F SHAP FL 1Y | 115 45 $5 Fr [H 1 ) SHAP
8 I % e BE R (1R 9) , 18] 9a FE] 9b 43 531 kg Xif
TAN 1 COD A9 TN AT: 55 F5 AF e BE TR o 6 A g

Fig. 8 Correlation analysis of water quality factors

SHAP {H ¢ 7% #5358 b IR 7 X B 8 i 1 ) o2 ik, 0
A AR I N IR

FH ] 9a w61, X T TAN 5200 72 B e K1) 5
AR FHIK R TN, COD T, DO Al TP, H A #B4)
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FE bR IR 11 SHAP (B 52 P21 Zc s A7 7 Bl 0 A 745
PRI R ZH5hR T 5 TAN S E.

H1 1 9b A0, XS COD %0 2 8 i KA 5
AT TAN . TN .NO;-N DO #l AP, 3 43
FEHR PR 11 SHAP (B 52 B “41 /e W6 A7 7 il 4 A 745
PR R Z R A T5 COD B,

g | High
e TNE e o Sompe: i s
> Q Q °
2. E T o il o e S
£2Z DO : 2
RS TP " g
oo o
&< 2 NO;-N
53 =
& § 5 NO»-N I
NS & AP &
= . L : L L : Low
S 5 QA & Q
Q_\ N @B Q.\ >
2 AR Q-

SHAP value(impact on model output)

(a) TAN A 7-SHAP{H AR E
TAN factor SHAP value bee colony plot

PRI X BT S 00 (15 553

SHAP FE R BE45 3 15 2.2 95 A AH SV 20 B
ZERIEA e ARl . SO P AR T AN %
JE R IR 22 18] A4 52 HL AT I FD 2272 5 52 5 11 SHAP
TR E % S IR A o A5 TR 0 A 4 =y R ¥ T
wk, B 228 5 A, OF HLRERS £545 75 B4k 18] 1
LHAE AR A AR LR R

° High
%T) TANS R T
2% TN B | L E
£ E NOsN - - S
£2 DO o sl &
TE AP| - = S
= T - =
5 3
55 + &
£ & NO-N . e
2 bS] pH -- 4 =
= . . ; . ol Low
Vv N Q N v
& & S &
/Q. /Q. Q. Q.
SHAP value(impact on model output)
(b) CODIA 7" SHAPIH#EHT ]

COD factor SHAP value bee colony plot

B9 &iSHREF SHAPHEIERE
Fig. 9 Colony plot of SHAP values for each indicator factor

2.3 REBSHML
it i Hyperband 5 /6 — % Vi [l N I S8R

1) Fe AT 2 000 B9 T 26 3, %1 10a FTAT 10b 43 531)
A TAN F1 COD T A% 76 {8 45 2 pRi £ A

®3 RIBSHEE

Tab.3 Optimal hyperparameter configuration

T AT Rtk B 2R i pR
Prediction model Learning rate Hidden size Loss
TAN 0.000 213 191 026 046 070 40 128 0.007 372 960 913 926 363
COD 0.000 106 102 874 305 149 34 256 0.020 959 311 863 407 493
0.040 F
0.014 - —— Train_loss —— Train_loss
0.013 + 0.035
0.012 +
0.011 0.030
0.010 0.025 L
0.009 +
0.008 L 0.020
0.007 £ . . A ! A A A A A . .
0 10 20 30 40 50 0 10 20 30 40 50

(a) TANTR A5 2K pR AL
TAN prediction model loss function

(b) CODTUM A5 %k
COD prediction model loss function

E 10 TAN COD Fl#EEH) LOSS & £ E
Fig. 10 LOSS function diagram of TAN and COD prediction models

2.4 HRENLAL
TEGE T L gs 7 ) Sk, A5 2238 FR )
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SR T 113

FEIH o, RITHIN 25 SR 5 5 s 22 8] 1) 5F- 25 246 %
ZE SN B EAT B TS B . MSE J2& 55
— A T A A 1 Y A, BB T 0, B R
AR TR (14 15 2 - 7 R /)N BIVASE 7R 000 £ v
BB R o RP DU P T A A R X A A Sk 1Y
i B R B, HAB M 1, 32 AR X 8 i 00 &
AR BR AT, i RE R B 3 H A R 0.7
Bf, F B RE O 75 , AT 265 /a0 10 J00 00 o 2
ORI BEAR R 14 it R L AR F0I00 7 A 17 H) r
T 25 A ELR I R S RV BCH S PR SR 25 5 PEA
DA AR TR Sy f o e e A A o

2R AEE W, TAN Tl B AL ) MAE A1 MSE
P18 LT COD WNALRY , i R2W5 2 M fz , ¢
AW E Y FC-TCN-GRU B8 7E TAN 1 Tl
KB B T COD. [AlIF, TAN 530 455 48 )
MAE(0.255) /N T 1, MSE Y % 0.089, R*(0.861)
WIKTF 0.7, £ BRI MEREOL TS bR IE . Rtk nT LA
AN FC-TCN-GRU BB 7 TAN $5 b 1) T o &
U e, HA R0 TO0 A 1 F A RE RE

il COD FiMAL R () MAE M 1.75, #8853 71,
MSE 4 4.84, R4 0.332, 1K T 0.7, FUITHEH
FC-TCN-GRU # U7 COD $8 45 1Y AT 55 v 3¢
AR, T3y 0000 o e 1 R A B 1 T i A TR A

25 —=— LY Ture

—e— il Pre
95%E {5 X [A] 95% Confidence interval

— N
n o
T T

A TAN/(mg/L)
& 5

(=)
T

5 10 15 20 25
FEAS Sample
(a) TAN4EFEAS Test set samples of TAN

(=]

155 , T Bt — AP AT LA AR e LT fE
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Prediction of ammonia nitrogen and chemical oxygen demand in
Litopenaeus vannamei aquaculture ponds based on the FC-TCN-GRU model

WANG Zhihua', WU Hao’, ZHOU Yingxian', LI Guijuan', JIANG Min'*

(1. College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; 2. College of
Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; 3. Shanghai Higher Education
Engineering Research Center for Water Environment Ecology, Shanghai Ocean University, Shanghai 201306, China)

Abstract: Based on water quality data from Litopenaeus vannamei aquaculture ponds in the same
aquaculture farm during 2014-2018 and 2021-2024, this study selected key water quality parameters
including total nitrogen (TN), total phosphorus (TP), active phosphorus (AP), nitrate nitrogen (NO;-N),
nitrite nitrogen (NO;-N), total ammonia nitrogen (TAN), chemical oxygen demand (COD), temperature
(T) , and pH values to develop water quality prediction models for TAN and COD using temporal
convolutional network (TCN) and gated recurrent unit (GRU). A hybrid FC-TCN-GRU model
architecture was constructed, which employed TCN for feature extraction and dimensionality reduction of
data features, fed the processed data into GRU, and finally maped the results through fully connected
layers (FC) to generate predictions. Mean absolute error (MAE) , mean squared error (MSE) , and
coefficient of determination (R?) values of the FC-TCN-GRU model for TAN prediction were 0.255, 0.089
and 0.861, respectively, while achieved 1.750, 4.840 and 0.332 for COD prediction. Compared with PCA-
LSTM, basic LSTM and basic GRU models, the FC-TCN-GRU model showed better predictive accuracy
for both TAN and COD prediction. The model performs superior in TAN prediction, but it still needs
improvement in COD prediction.

Key words: Litopenaeus vannamei; water quality prediction; fully connected layers; gate recurrent unit;

temporal convolutional network
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