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摘　要： 基于 2014—2018年及 2021—2024年某水产养殖合作社凡纳滨对虾（Litopenaeus vannamei）养殖池塘

的水质检测数据，选取总氮（TN）、总磷（TP）、活性磷（AP）、硝态氮（NO3
--N）、亚硝态氮（NO2

--N）、氨氮

（TAN）、化学需氧量（COD）、温度（T）和 pH 等在内的关键水质参数，构建了基于时域卷积网络（Temporal 

convolutional network，TCN）和门控循环单元（Gate recurrent unit，GRU）的TAN和COD水质预测模型。首先

搭建FC-TCN-GRU的混合模型，即采用TCN对数据特征进行提取和降维处理，再将处理后的数据输入GRU

模型，最后通过全连接层（Fully connected layers，FC）映射为预测结果。对搭建好的 FC-TCN-GRU模型进行

评估，其绝对误差（MAE）、均方误差（MSE）和决定系数（R2）在对 TAN预测中分别为 0.255、0.089和 0.861；在

对COD的预测中分别为 1.750、4.840和 0.332。将模型与PCA-LSTM、基本LSTM和基本GRU模型对TAN和

COD 的预测结果进行比较，结果显示：FC-TCN-GRU 模型对 TAN 和 COD 指标的预测精度优于其他 3 种模

型，在TAN预测中表现出色，但对COD的预测效果尚有提升空间。
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凡纳滨对虾（Litopenaeus vannamei）是全球

最广泛养殖的对虾品种之一，因其温度和盐度适

应范围广、生长速度快、肉质鲜美而备受青睐［1］。

氨氮（TAN）和化学需氧量（COD）等水质指标是

影响对虾生长和诱发对虾暴发疾病的关键因素。

凡纳滨对虾对 TAN 的耐受性极低，即使 TAN 浓

度未达致死水平（0.3~0.5 mg/L），也会影响其生

长，导致养殖周期延长和经济损失；COD 的升高

会导致异养菌大量繁殖，在一定程度上抑制硝化

菌的活性，进一步加剧 TAN 的积累。对 TAN 和

COD指标进行快速准确的预测，可对水质恶化提

前做出预警，降低养殖风险［2］。

当前，关于水质预测模型的研究主要聚焦于

两类神经网络：前馈神经网络和循环神经网络 。

CAO 等［3］和 REN 等［4］利用前馈神经网络分别对

一般养殖水体和鱼菜共生系统中的溶解氧指标

进行了预测，前者运用了正则化极限学习机与经

验模态分解进行组合预测，后者则运用遗传算法

优化后的模糊神经网络进行预测，提高了模型的

泛化能力和预测精度。

养殖环境除了受到自然环境、气候的影响

外，还受到养殖品种、养殖管理等的人为干扰，水

质具有复杂性和不确定性，要求预测模型具有较

高的准确性和适应性，能够处理非线性、时变性

和多变量的数据，并能够适应环境变化。利用前

馈神经网络构建的模型不能捕捉数据之间的时

间相关性，而以长短期记忆网络（Long short-term 

memory，LSTM）和门控循环单元（Gate recurrent 

unit，GRU）为代表的循环神经网络模型在时间序

列预测任务中则表现出良好的性能，在一定程度

上弥补了前馈神经网络模型的缺点［5］，因而被广

泛应用于水质预测。王昱文等［6］通过结合 GRU
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和全连接层（Fully connected layers，FC），提出了

1个多元水质参数预测（MWQPP）模型，用于预测

自然水体中的 4 个水质参数（pH、DO、COD 和

TAN），结果表明该模型相比于传统的单模型，具

有更好的鲁棒性。LI 等［7］通过结合 RNN 和改进

后的Dempster-Shafer（D-S），提出了RNNs-DS模

型，用于预测自然水体中的 4个水质参数（COD、

pH、TP和DO），并对比了SVR和BPNN等多个模

型。研究表明，RNNs-DS模型在水质预测上具有

更高的准确性和稳定性。

冗余的时间序列变量会引入噪声，从而降低

多变量时间序列预测模型的精度。YU等［8］为减

少噪声对自然水体的 DO 和 TAN 预测结果的干

扰，将鄱阳湖水质数据切割为若干个子序列，获

得子序列后利用 c均值聚类法进行重组，再针对

每个聚类序列建立 BiGRU 预测模型。陈英义

等［9］为解决对杂交鲌鱼养殖池塘中溶解氧预测时

出现的数据冗余问题，对数据采用小波变换和卷

积网络联用的方法进行降噪。CAO 等［10］在螃蟹

养殖池塘的溶解氧预测研究中，在GRU模型中引

入了注意力机制，使模型更好地处理长序列场

景。

本研究提出构建 FC-TCN-GRU 水质预测混

合模型，将时域卷积模型（Temporal convolutional 

network，TCN）的数据特征提取能力和GRU的非

线性拟合能力相结合，再通过 FC 将高维特征映

射为最终预测结果，以期对养殖水体的 TAN 和

COD变化进行预测。

1　材料与方法

1.1　数据来源

实验数据源自课题组对上海市奉贤区思阳

水产养殖合作社 2014—2018年和 2021—2024年

的常规水质监测，共计 832组。在养殖期间，每 5

天对 3 个凡纳滨对虾露天池塘直接测量水温 T，

现场用 pH 计和溶氧仪测定 pH、DO；采集水样带

回实验室后分别用碱性高锰酸钾法（HY003.4—

91）、碱性过硫酸钾消解紫外分光光度法（GB 

11894—89）、纳氏试剂分光光度法（GB7479—

87）、分子吸收分光光度法（GB7493—87）、紫外

分光光度法（HJ/T 346—2007）和钼酸铵分光光度

法（GB 11893—89）测定COD、TN、TAN、NO2
--N、

NO3
--N、TP和AP等指标。

1.2　数据预处理

1.2.1　数据正态检验

Shapiro-Wilk 检验基于数据的顺序统计量

（排序后的样本值）与理论正态分布期望值的相

关性。其原理是：若数据服从正态分布，则样本

顺序统计量与理论期望值应高度相关。检验统

计量W的计算公式为

W = [ ]∑i = 1
n ai xi

2

∑i = 1
n ( )xi - x̄ ( )1

式中：xi为排序后的样本数据；x̄为样本数据的平

均值；ai为预先计算的系数；n为样本量。

1.2.2　异常数据和缺失值的处理

由 1.2.1节可知，本研究使用的数据集属于非

正 态 分 布 数 据 。 因 此 ，采 用 马 氏 距 离

（Mahalanobis distance）对水质数据进行识别与筛

选，以剔除异常数据：

D = ( )X - μ T
S-1 ( )X - μ ( )2

式中：X为单个数据点的特征向量；μ为均值向

量；T 为矩阵的转置；S-1 为协方差矩阵的逆矩

阵。

对于时间间隔较小的缺失数据，通过计算缺

失数据点前后 5日同一时刻的数据均值来完成数

据填补；对于时间跨度较大的缺失数据，采用 1种

基于气象条件相似性的插补方法，即选取与缺失

数据点在天气类型上相似的时间段，利用这些时

段的数据进行缺失值的补全［11］。

1.2.2　归一化处理

归一化能够提高梯度下降求最优解的速度，

也能在一定程度上提高模型的精度和泛化能

力［12］。本研究采用的归一化方法是离差标准化

（Min-Max normalization），该方法会将特征值映

射到［0，1］之间，适用于样本数据比较集中的情

况。

Xnorm = X - Xmin
Xmax - Xmin

( )3
式中：Xnorm 为归一化后的值；X表示原始数据；Xmax
和Xmin分别为数据集中的最大值和最小值。

1.2.3　数据集划分

数据清洗后，将数据集的前 80%划分为训练

集［13］，即 2014—2018年采集的数据；后 20% 为测

试集，即2021—2024年采集的数据。
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1.3　基本模型

1.3.1　门控循环单元GRU

GRU的核心结构包括 2个主要的门：更新门

（Update gate）和重置门（Reset gate），见图 1。更

新门的值（zt）在 0到 1之间，值越接近 1，表示对先

前记忆的保留程度越高，计算公式为

zt = σ (Wz* [ ht - 1，xt ] ) ( )4
式中：σ为 sigmoid函数；Wz为权重矩阵；ht - 1 为前

一时刻的隐藏状态；xt为当前时刻的输入；*为矩

阵乘法。

重置门的值（rt）也在 0到 1之间，值越接近 0，

表示对之前信息的遗忘程度越高，计算公式为

rt = σ (Wr* [ ht - 1，xt ] ) ( )5
最后，GRU根据更新门和重置门的值更新当

前时刻的隐藏状态：
~
ht = tanh (Wr* [ rt·ht - 1，xt ] ) ( )6
ht = (1 - zt )∙ht - 1 + zt∙h͂t ( )7

式中：∙为内积；h͂t为候选隐藏状态。

1.3.2　时域卷积模型TCN

TCN的结构如图 2所示，包含扩张因果卷积

的残差块是 TCN 的主要结构。残差块的设计使

得TCN能够有效地处理时间序列数据，同时保持

了模型的深度和复杂性。TCN 能够增加感受野

的宽度：

r = 1 + ∑i - 1
n - 12·( k - 1)·b ( )8

式中：r为网络的感受野宽度；b为扩张基；k为内

核大小；n为残差块数量。

图 1　GRU 核心结构
Fig. 1　The core structure of the GRU

图 2　TCN 残差块
Fig. 2　Residual block of TCN
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1.3.3　全连接层FC

全连接层 FC 的结构如图 3所示，输入向量 x

通过 1个权重矩阵W完成线性变换，再依次进行

添加偏置项 b并通过激活函数 σ完成非线性变

换，得到输出向量 y［14］：

y = σ (W*x + b) ( )9
1.4　特征构造

通过滞后效应建模将投喂量构建为时序滞

后特征，进而将其融入 FC-TCN-GRU混合模型，

该方法能够有效量化人为管理的直接与间接影

响。滞后效应建模如下：

Lagk (Xt ) = Xt - k ( k = 1，2，3…T ) ( )10
式中：Lagk ( )Xt 为时间序列 X 在时间步 t的 k 阶滞

后值；t为当前时间步；X为投喂量；k为滞后步长；

T为最大滞后时间。

1.5　FC-TCN-GRU 模型

本研究将 TCN 与 GRU 的优势相结合，构建

TAN序列预测模型，其主要结构如图4所示，模型

建立流程如图 5所示。首先，将预处理后的数据

输入TCN层，通过内核大小为 3，扩张因子为 1的

残差块实现对输入序列更广泛的感受野覆盖，并

对所得特征进行了深入挖掘和维度缩减；将TCN

处理过后的数据输入GRU，GRU按 1个时间步向

后处理输入序列，这种方式使得GRU不会随时间

步的增加而清除以前信息，而是会保留相关信息

并传递到下一单元；最后再经由全连接层将高维

特征映射为最终输出序列。

图 3　全连接层
Fig. 3　Fully Connected Layer

图 4　FC-TCN-GRU 结构
Fig. 4　Structure of FC-TCN-GRU
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1.6　模型超参数调优

模型超参数（Hyperparameters）用于控制学

习过程，帮助确定模型的学习能力和泛化能力；

本研究主要调试的超参数是学习率（Learning 

rate，lr）和隐含层大小（Size）。

使用能够多轮次并行运行的Hyperband算法

在一定范围内自动搜索最优超参数组合，算法流

程如图6所示。

图 6 中：R为单个超参数组合最多分配的资

源；μ为每轮中保留的超参数组合比例；smax为最

大评估轮数；B为总预算；s为当前评估轮数；p为

超参数组合数；r为每个超参数组合实际分配的

资源量；i为迭代次数，用于控制循环；pi为当前迭

代中的超参数组合数量；ri为当前迭代中的资源

量。

1.7　PCA-LSTM、基本 LSTM、基本 GRU 模型

的建立

参照习文双［15］等和 LEE［16］等的研究，与 FC-

TCN-GRU模型采用同一数据集，分别建立PCA-

LSTM、基本 LSTM 和基本 GRU 模型，旨在与本

研究提出的 FC-TCN-GRU 模型进行性能对比分

析。通过这一比较，旨在深入探讨不同模型在处

理相同数据集时的效能差异，从而验证FC-TCN-

GRU模型的优势和适用性。

图 6　Hyperband 算法流程
Fig. 6　Hyperband algorithm process

图 5　模型建立流程
Fig. 5　Model establishment process
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数据输入PCA-LSTM模型时，首先对数据进

行 PCA 降维，再将降维后特征值大于 1 的 5 个主

成分（表 1）输入LSTM进行训练。因此FC-TCN-
GRU、LSTM 和 GRU 模型的输入节点为 5，PCA-
LSTM为10。

1.8　解释模型 SHAP

SHAP 通过量化每个特征对预测结果的贡

献，对机器学习算法的预测结果进行解释。

φi = ∑
S × ( )F { }i

|| S ！( )||F - || S - 1
||F ！

× [ fSU { }i ( xSU { }i ) -
fs ( xs ) ] ( )11

式中：φi 为特征 i的 Shapley 值；|F| 为特征总数；

F { i}为除特征 i外所有可能的特征组合的集合；S
为 F { i }的特征集合；fs ( xs ) 为 S中特征的模型预

测；fSU { }i ( xSU { }i ) - fs ( xs )为特征 i在已有特征 S的情

况下，对预测的边际贡献。

基于此，解释模型为

G ( z') = φ0 + ∑
i = 1

M

φi z' ( )12
式中：z'ϵ{0，1}M为相应特征是否对模型预测有贡

献；M为输入特征数；φ0 为模型常数；φi为特征 i
的Shapley值。

1.9　模型评估指标

本研究采用平均绝对误差（MAE）［17］、均方误

差（MSE）［18］、决定系数（R2）［19］和相对误差（Er）
［20］

对模型的效能进行评估。MAE和MSE常用于评

估预测值和真实值之间的误差大小；R2能较好地

体现模型对数据的拟合优劣程度；Er能够帮助判

断预测值是否处于合理范围内：

MAE = 1
m∑

i = 1

m

|| yi - y'i ( )13
MSE = 1

m∑
i = 1

m ( yi - y'i ) 2 ( )14

R2 = ∑i = 1
n ( )y'i - ȳ 2

∑i = 1
n ( )yi - ȳ 2 ( )15

Er = yi - y'i
yi

 ( )16
式中：m、n为样本数；yi为第 i时刻的真实值；y'i为
第 i时刻的预测值；ȳ为样本平均值。

2　结果

2.1　正态性分布检验

使用 SPSSPRO 对数据集进行正态检验（表

2和图 7），结果显示TAN和COD呈现显著性（P<

0.05），因此可认为 TAN 与 COD 均不符合正态分

布。

2.2　目标因子与各特征因子的相关性分析

对水质因子进行相关性分析，可排除相关性

低的变量，有助于降低网络规模和提高网络性

能，从而改善由于冗余变量导致的模型精度下降

问题。由图 8 可知，与 TAN 呈正相关的指标有：

TN、AP、NO2
--N、DO、TP 和 NO3

--N，呈负相关的

指标有：T、pH 和 COD。相关程度排序：NO3
--N、

TP、TN、AP、COD、NO2
--N、pH、T和DO。与TAN

相关性最大的 5个因子为 NO3
--N、TP、TN、AP和

COD；同理可得，与 COD 相关性最大的指标为

TN、TP、T、DO和pH。

表 1　主成分分析
Tab. 1　Principal component analysis

成分
Component

1

2

3

4

5

6

7

8

9

10

特征值
Eigen value

2.098 85

1.914 38

1.358 56

1.118 24

1.021 52

0.770 23

0.655 65

0.497 31

0.393 26

0.171 99

初始贡献率
Percentage of variance/%

20.988 48

19.143 81

13.585 56

11.182 39

10.215 22

7.702 33

6.556 54

4.973 08

3.932 63

1.719 95

累积贡献率
Cumulative/%

20.988 48

40.132 29

53.717 86

64.900 24

75.115 46

82.817 80

89.374 34

94.347 42

98.280 05

100.000 00
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2.3　SHAP 模型解释结果

基于 SHAP 模型，计算各指标因子的 SHAP

值并输出蜂群图（图 9），图 9a 和图 9b 分别为对

TAN 和 COD 的预测任务特征蜂群图。横坐标

SHAP 值表示各指标因子对模型输出的贡献，纵

坐标均表示特征值。

由图 9a可知，对预测TAN影响程度最大的 5

个因子依次为 TN、COD、T、DO 和 TP，且大部分

图 7　正态分布 Q-Q 图
Fig. 7　Normal distribution Q-Q diagram

表 2　正态性检验结果
Tab. 2　Normality test results

指标
Factor

氨氮COD/
（mg/L）

化学需氧量TAN/
（mg/L）

中位数
Median

10.220

0.735

平均值
Average value

10.439

1.291

标准差
Standard deviation

5.429

1.565

偏度
Skewness

1.847

3.081

峰度
Kurtosis

10.735

11.238

Shapiro-Wilk

0.888

0.635

P

0

0

图 8　水质因子的相关性分析
Fig. 8　Correlation analysis of water quality factors
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指标因子的 SHAP 值呈现“红左蓝右”的分布态

势，表明大多指标因子与TAN呈现负相关。

由图 9b可知，对预测COD影响程度最大的 5

个因子依次为 TAN、TN、NO-3-N、DO 和 AP，部分

指标因子的 SHAP 值呈现“红左蓝右”的分布态

势，表明大多指标因子与COD呈现负相关。

SHAP 模型解释结果与 2.2 节的相关性分析

结果并不完全相同。这是因为，相关性分析不考

虑特征之间的交互作用和多变量影响；而 SHAP

模型能够反映特征对模型预测的全局或局部贡

献，即多变量分析，并且能够综合考虑特征间的

交互作用和模型的非线性因素。

2.3　模型超参数优化

通过Hyperband算法在一定范围内自动搜索

的最优超参数配置列于表 3，图 10a和图 10b分别

为TAN和COD预测模型的损失函数图。

2.4　模型评估

在统计学和机器学习领域，有多个指标可用

于模型性能的评估。MAE是衡量预测准确性的

1个重要指标，当MAE值小于1时，普遍认为模型

图 9　各指标因子 SHAP 值蜂群图
Fig. 9　Colony plot of SHAP values for each indicator factor

表 3　最优超参数配置
Tab. 3　Optimal hyperparameter configuration

预测模型
Prediction model

TAN

COD

学习率
Learning rate

0.000 213 191 026 046 070 40

0.000 106 102 874 305 149 34

隐含层大小
Hidden size

128

256

损失函数
Loss

0.007 372 960 913 926 363

0.020 959 311 863 407 493

图 10　TAN 和 COD 预测模型的 LOSS 函数图
Fig. 10　LOSS function diagram of TAN and COD prediction models
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表现出色，即预测结果与实际值之间的平均绝对

差异较小，模型具有较高的预测精度。MSE是另

一个衡量预测准确性的指标，其值越接近 0，意味

着模型预测的误差平方和越小，即模型预测的准

确性越高。R2则用于衡量模型对数据变异性的

解释程度，其值越接近 1，表明模型对数据的拟合

效果越好，解释能力越强；通常认为，R2值超过 0.7

时，表明模型性能优秀，具有较高的预测准确性。

当然，这些指标的解释力和预测准确性的判断还

需结合具体的应用场景和数据范围来综合评估，

以确保模型评估的准确性和适用性。

表4数据显示，TAN预测模型的MAE和MSE

均显著低于COD预测模型，而R2则与之相反，表明

本研究构建的FC-TCN-GRU模型在TAN的预测

精度上显著优于 COD。同时，TAN 预测模型的

MAE（0.255）远小于 1，MSE仅为 0.089，R2（0.861）

则大于0.7，符合模型性能优秀的标准。因此，可以

认为FC-TCN-GRU模型在TAN指标的预测中表

现出色，具有良好的预测准确性和解释能力。

而COD预测模型的MAE值为1.75，超过了1，

MSE为 4.84，R2为 0.332，低于 0.7。表明所构建的

FC-TCN-GRU模型在COD指标的预测任务中表

现不佳，预期的预测准确性和解释能力还有待提

高，需要进一步进行优化以提高其预测性能。

2.5　模型预测结果

图 11 为 2021—2024 年 TAN 和 COD 实测值

与预测值的变化趋势。由图 11a可知，TAN 预测

结果中 95%的数据点都位于 95%置信区间内，可

认为预测值和实测值吻合度很高。虽然以MAE、

MSE 和 R2值评价 COD 的预测模型结果不理想，

但图 11b 中 COD 预测数据基本都位于 95% 置信

区间内。MAE、MSE 和 R2值聚焦于评估模型预

测值与实际值之间的偏差程度，主要作用是衡量

模型预测精度。而置信区间则侧重于关注预测

结果的不确定性和可信度。评价指标表现不佳，

表示模型的预测误差较大；而预测值均落于 95%

置信区间之中，则表示模型在整体趋势和预测范

围仍是可信的。

通过公式（12）计算并将误差可视化，结果如

图 12a所示。TAN 的整体相对误差都较小，大部

分数据都在 0.25之间，虽然个别点位仍有一定误

差，但总体上趋于一致。仅在第 6次与第 22次的

相对误差超出 0.5，其中第 6 次的实测值 y6=0.88 

mg/L，预测值为 y6 '=1.27 mg/L；第 22 次的实测值

y22=1.34 mg/L，预测值为 y22 '=0.86 mg/L。回顾这

2 次数据采集时的情况可知：第 6 次数据采样日

期为 2022 年 11 月 30 日，上海受冷空气影响出现

剧烈降温；第 22次数据的采样日期为 2024年 9月

16 日，在采样前一天，台风“贝碧嘉”登陆上海。

两次极端天气对养殖水质产生了影响，导致预测

结果与真实值存在偏差。

由于 COD 数据数量级大于 TAN，并且 COD

数据在相对误差图中的离散程度较大，如图 12b

所示。从第 6 次数据开始，相对误差超出 0.5，后

表 4　TAN 和 COD 预测模型的各评价指标
Tab. 4　The evaluation indices of the predictive model 

for TAN and COD

预测指标
Predictive factor

氨氮TAN

化学需氧量COD

平均绝对
误差
MAE

0.255

1.750

均方误差
MSE

0.089

4.840

决定系数
R2

0.861

0.332

图 11　预测值 95% 置信区间
Fig. 11　95% confidence interval for forecasts
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续数据相对误差逐步变大，出现最大的相对误差

超过 0.75。因此本研究认为，FC-TCN-GRU模型

在对COD指标的预测性能方面，仍存在进一步优

化和提升的潜力。未来研究可以探索更复杂的

网络架构、更精细的特征工程或更先进的优化算

法，以期实现对COD指标更为精确的预测。

2.6　多种模型对比

将同一数据集分别输入 FC-TCN-GRU 与

PCA-LSTM、LSTM、GRU 模型，并对训练结果进

行比较。4种模型的超参数及输入节点如表 5所

示。

模型建立完成后，对 2021—2024年某养殖场

的TAN进行预测，采用MAE、MSE和R2的值对各

模型预测能力进行对比。

图 13 显示，FC-TCN-GRU 模型在 TAN 和

COD预测精度上优于其余3种模型，其中GRU模

型表现优于LSTM，原因是GRU更适合处理小数

据集。此外，FC-TCN-GRU模型显示出更强的鲁

棒性、泛化能力和更高的预测精度，更适合应用

于凡纳滨对虾养殖水体的预测。

3　讨论

3.1　FC-TCN-GRU 模型的优势

目前在水产养殖领域，LSTM 是预测水质变

化的重要模型，因为其能够很好地解决循环神

经网络因长期依赖而带来的梯度消失与梯度爆

炸问题，但由于 LSTM 有 3 个不同的门，其所需

要的参数较多，导致了实现的难度较大［21］。

GRU 模型是在 LSTM 基础上进行优化的模型，

在超参数全部调优的情况下，二者的性能相当，

但 GRU 的结构更为简单，需求的训练样本比

LSTM 更少，在极大程度上降低了实现的难度与

成本。本研究提出的 FC-TCN-GRU 模型，首先

使用 TCN 对数据特征进行降维处理的同时能够

更好地捕捉局部的依赖关系，进而提高 GRU 的

预测精度。

图 12　预测值的相对误差
Fig. 12　The relative error of the predicted values

表 5　4 种模型的输入节点及超参数优化结果
Tab. 5　The evaluation indices of the predictive models for TAN and COD

参数
Parameter

输入 Input

学习率 lr

隐含层 size

损失值LOSS

LSTM

TAN

5

0.001

64

0.007

COD

5

0.000 1

256

0.021

GRU

TAN

5

0.001

128

0.006

COD

5

0.002

64

0.006

PCA-LSTM

TAN

10

0.000 9

64

0.007

COD

10

0.000 5

64

0.02

FC-TCN-GRU

TAN

5

0.000 2

128

0.007

COD

5

0.000 1

256

0.02
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3.2　模型预测效果的制约因素分析

水质指标预测模型是池塘养殖中不可或缺

的工具，通过精准预测水质变化，为科学管理和

健康养殖提供了强有力的数据支持。本研究提

出的FC-TCN-GRU模型虽在 2021—2024年某养

殖场的 TAN 指标预测中的效果良好，而 COD 指

标的预测并不理想，仍有个别时刻预测结果偏差

较大，原因可能有以下两点：其一，台风、暴雨等

极端天气事件会对养殖池塘的水质产生显著影

响。这些突发性的自然现象可能会导致水质参

数的剧烈波动，而这种波动在历史数据中可能不

常见，因此模型难以准确预测。其二，在数据预

处理阶段，本研究未能充分考虑采样当天的天气

情况，仅依据数据是否出现剧烈波动来识别异常

值。这种方法可能导致模型无法捕捉到特定天

气条件下的数据特征，进而影响模型在类似情况

下的预测准确性。

值得注意的是，养殖水体相较于天然水体，

一个显著的区别在于人为干预的存在与否。本

研究构建的模型在纳入大量数据进行训练的同

时，特别考虑了人为干预这一外部因素，从而使

得模型在预测过程中能够综合评估人为干预的

影响。这种综合考量显著提升了模型对 TAN 指

标的预测准确性，但对 COD 指标的预测精度提

升并不明显，而导致 COD 预测模型效果不理想

的原因主要是：第一，COD 指标的水质特征具有

高度复杂性，这要求模型必须具备足够的能力

来捕捉和模拟这些复杂的变化，而现有数据样

本可能不足以支持模型学习到 COD变化趋势的

全貌，导致模型在泛化能力上存在局限。第二，

模型复杂度的不足也是一个关键因素，可能限

制了模型捕捉 COD 数据特征的完整性和深度。

这可能是由于模型结构设计未能充分考虑 COD

数据的内在特性，或者是模型参数设置未能优

化至最佳状态。第三，未将足够的人为干预因

素进行量化，且构造的投喂量-时序滞后特征并

不能充分地将投喂量指标量化，导致模型预测

精度下降。第四，TCN 固定感受野对长周期波

动的适应性不足，本模型中 TCN 的感受野设计

更适用于捕捉局部时序特征，但对跨度数周至

数月的长周期波动可能缺乏拟合能力。第五，

GRU 对非线性交互与多尺度特征的整合能力有

限，其隐藏状态更新过程是线性变换与非线性

激活的叠加，对高度非线性的水质参数交互作

用可能拟合不足。

3.3　模型在养殖水质预测中面临的挑战与局限性

目前，FC-TCN-GRU预测模型仍然在多个方

面存在局限性，其中最亟需解决的是黑箱模型可

解释性较差的问题。虽然本研究使用了SHAP解

释模型量化了各个特征的贡献度，但是模型中更

深层的非线性交互机制仍然缺乏较为直观的解

释。尤其在误差较大的COD预测任务中，模型的

决策逻辑的透明度不足可能影响应用推广。同

时，与天然水体相比，养殖水体会受到人为干扰，

其DO、pH、营养元素和有机物等水质指标之间的

相关性更加复杂。例如养殖池塘中常开启增氧

机以提高DO水平，同时还带来了对水的扰动，进

而导致与氧化还原反应有关的各水质参数之间

的关系变得更加复杂，增加了模型准确捕捉关系

的难度，使模型预测精度有所下降［22-23］。同时，由

图 13　4 种模型预测结果精度分析
Fig. 13　Accuracy analysis of prediction results of four models
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于养殖池塘中的生物量远超自然水体，对虾等养

殖生物的活动会高频率地引发生物扰动现象，而

生物扰动会加速底泥悬浮，释放更多的耗氧物

质，导致捕捉 DO 的变化规律需考虑高频动态变

化［23-24］，增加预测难度。

3.4　模型优化建议

在模型优化方面，已有研究指出，基于多光

谱信息融合的水质 COD预测模型能够提高预测

精度和泛化能力，这表明结合多种信息源对于提

高模型性能具有积极作用［25］。此外，卷积神经网

络（Convolutional neural network，CNN）与紫外-
可见光谱分析法相结合的模型在水质 COD预测

方面也显示出了较高的预测精度［26］。这些研究

结果为提高 COD预测模型的性能提供了有益的

参考。因此，为了提升 COD预测模型的效果，需

要从数据收集、模型设计、训练策略等多个角度

进行综合考虑和优化。

综上所述，对虾养殖水质预测过程中可对模

型进行以下改进：第一，建议纳入极端气象事件

的数据并整合多种人工干预因素，以增强模型对

异常气候条件下水质变化的预测能力及提高模

型在实际应用中的准确性和可靠性。第二，将人

工干预作为一个特征因子与时间关联起来，可以

使模型能够在预测时根据不同的时间考虑不同

的人工干预因素，综合考量后提升模型预测的精

度。第三，针对数据预处理阶段中的异常值剔

除，建议采取更为审慎的态度。对于可能蕴含关

键信息的异常值，应考虑予以保留，或探索其他

先进的数据处理技术，以充分挖掘其潜在价值，

避免因简单剔除而损失重要数据特征。第四，在

处理数据中的缺失值时，建议采用多元化的插补

策略，并对比评估不同方法对模型性能的具体影

响，这样可以更好地保证数据完整性，同时减少

因插补引入的偏差，进一步提升模型的泛化能力

和预测精度。第五，引入自适应感受野机制（如

注意力机制等），通过在TCN中嵌入注意力模块，

动态调整不同时间步的权重，以增强对长周期波

动的敏感性。第六，在 TCN 与 GRU 间加入交叉

特征交互层（如自注意力或外部记忆单元等），捕

捉水质参数间的非线性关系。第七，通过引入更

丰富的数据样本、设计更复杂的模型结构、采用

有效的正则化和数据增强技术，以及借鉴已有的

研究成果，可有望提高模型在COD预测任务上的

性能。第八，优化养殖管理，通过精准投喂和控

制养殖密度，减少对虾的过度活动，降低底泥扰

动的风险。

作者声明本文无利益冲突。
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Prediction of ammonia nitrogen and chemical oxygen demand in 

Litopenaeus vannamei aquaculture ponds based on the FC-TCN-GRU model

WANG Zhihua1， WU Hao2， ZHOU Yingxian1， LI Guijuan1， JIANG Min1，3

（1.College of Oceanography and Ecological Science， Shanghai Ocean University， Shanghai  201306，China； 2.College of 

Fisheries and Life Sciences， Shanghai Ocean University， Shanghai  201306，China； 3. Shanghai Higher Education 

Engineering Research Center for Water Environment Ecology， Shanghai Ocean University， Shanghai  201306，China）

Abstract: Based on water quality data from Litopenaeus vannamei aquaculture ponds in the same 

aquaculture farm during 2014-2018 and 2021-2024， this study selected key water quality parameters 

including total nitrogen （TN）， total phosphorus （TP）， active phosphorus （AP）， nitrate nitrogen （NO-3-N）， 

nitrite nitrogen （NO-2-N）， total ammonia nitrogen （TAN）， chemical oxygen demand （COD）， temperature 

（T）， and pH values to develop water quality prediction models for TAN and COD using temporal 

convolutional network （TCN） and gated recurrent unit （GRU）. A hybrid FC-TCN-GRU model 

architecture was constructed， which employed TCN for feature extraction and dimensionality reduction of 

data features， fed the processed data into GRU， and finally maped the results through fully connected 

layers （FC） to generate predictions. Mean absolute error （MAE）， mean squared error （MSE）， and 

coefficient of determination （R²） values of the FC-TCN-GRU model for TAN prediction were 0.255， 0.089 

and 0.861， respectively， while achieved 1.750， 4.840 and 0.332 for COD prediction. Compared with PCA-
LSTM， basic LSTM and basic GRU models， the FC-TCN-GRU model showed better predictive accuracy 

for both TAN and COD prediction. The model performs superior in TAN prediction， but it still needs 

improvement in COD prediction.

Key words: Litopenaeus vannamei； water quality prediction； fully connected layers； gate recurrent unit； 

temporal convolutional network
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