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Tab.1 Variance inflation factor between
explanatory variables

il A e IEES
Explanatory variables VIF
X, 1.257 278
ZEX,, 2.554 939
H X 1.279 271
EX,. 1.047 454
TR X g 2.650 617
M4 R a R X, 2.175 974
T 2 X gy 3.155 789
T RIER B X o 2.061 528
2 5
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Tab. 2 Statistical results of GAM model (In(CPUE+0.1))
fit R AR i DAY= R R I 22 P
Explanatory variables AlIC Deviance explained/%
+EX,, 10 926.02 54.1 <0.01
A Xy 10 834.18 55.3 <0.01
SR a R X, 10 820.19 55.6 <0.01
IR R T 5 X oy 10 454.27 60.0 <0.01
IR RN X g 10 412.77 60.5 <0.01
XA X, )X 10 199.33 63.3 <0.01
AL AR X <Xy 10 030.08 65.5 <0.01
FAEX A XX o 9735.45 68.5 <0.01
AL X5 o 9 689.66 69.2 <0.01
T 2R T ek 3 < Vg TR X g X s 9 650.55 69.8 <0.01
#®3 GAMEE!(In(CPUE+0. 01))5it &R
Tab. 3 Statistical results of GAM model (In(CPUE+0. 01))
fiR R R i At B BRI 22 p
Explanatory variables AIC Deviance explained/%
X, 12 509.56 50.0 <0.01
I Xy 12 398.71 51.6 <0.01
ISR a IR EE X, 12 385.24 51.8 <0.01
IR R 5 X ey 12 059.06 56.1 <0.01
HIEF R ERE X o5 12 029.91 56.5 <0.01
XA X, %X, 11 780.98 60.0 <0.01
FEE AR X <X 11 662.62 61.8 <0.01
FLEEEE T X X o 11 430.00 64.6 <0.01
FEEX A X, %X o 11 393.55 65.2 <0.01
T R T ek 3 < VG TR X i X s 11 340.90 66.0 <0.01
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standardized by the GAM model of the longline fishery for albacore tuna in the Southeast Pacific Ocean from 2013 to 2022
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CPUE standardization in the longline fishery for albacore tuna in the
Southeast Pacific Ocean

NIU Chenggong ', LIN Qingin ', YANG Shiyu ', ZHU Jiangfeng "

(1.College of Marine Biological Resources and Management , Shanghai Ocean University , Shanghai 201306 , China ;
2.Ministry of Education Laboratory for Sustainable Development of Ocean Fishery Resources, Shanghai 201306, China
3.Key Laboratory of Ocean Fishery Development, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China)

Abstract: To address potential biases caused by the long-term dependence on fishing data from Japan and
Korea for the stock assessment of albacore tuna ( Thunnus alalunga) in the Southeast Pacific Ocean, this
study constructed an abundance index using Chinese longline fishery data.Based on Chinese tuna longline
fishery catch data and marine environmental parameters from 2013 to 2022, generalized additive models
(GAM) were employed to standardize catch per unit effort (CPUE) , quantifying the effects of latitude,
longitude, year, month, environmental factors, and their interactions. The standardized CPUE trends of
Chinese and Japanese longline fisheries were compared using ordinary least squares (OLS) regression
models. The results show that the maximum interpretation bias of the model for CPUE was 69.8%, and
latitude had the most significant effect on CPUE. The areas with higher index are mainly around 20°S-30°S
and 100°W-120°W, and the highest index is in 2016, and the highest month is from April to August. The
trends of standardized CPUE and nominal CPUE were mostly the same, and both have obvious seasonal
fluctuations. Except for 2020, the standardized CPUE was lower than the nominal CPUE. In most years,
the standardized CPUE based on China's fishery data has a similar trend to that of the Japanese longline
fishery. This study provides a new abundance index information for the stock assessment of albacore tuna in
the Southeast Pacific Ocean, and is valuable for further improving the stock assessment.

Key words: albacore tuna; CPUE standardization; generalized additive model; abundance index;

Southeast Pacific Ocean
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