西北太平洋重要鱼种的形态参数识别与物种分类应用
作者:
中图分类号:

S931.4

基金项目:

农业农村部全球渔业资源调查监测评估(公海渔业资源综合科学调查)专项(D-8025-23-1002)


Morphological parameter identification and species classification of important fish species in Northwest Pacific Ocean
Author:
  • WANG Chao

    WANG Chao

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YU Jun

    YU Jun

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Bilin

    LIU Bilin

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China;Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China;Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FANG Zhou

    FANG Zhou

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China;Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China;Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [19]
  • | | |
  • 文章评论
    摘要:

    为了解西北太平洋重要鱼种形态结构多样性,有效提升该海域鱼类物种识别效率,利用地标点数据和几何形态测量学方法分析了西北太平洋8目14科24属26种鱼类(n=485尾)的形态差异,评估不同鱼体部位形态参数对物种识别的分类效果。结果显示,不同目和物种的鱼体形态存在显著差异,多元回归分析检测到部分物种存在异速生长现象。分类方面,鱼体和躯干部形状可以较好地区分不同物种。研究表明,西北太平洋海域鱼类物种具有多样的体型结构,不同物种生活史的异质性及遗传因素可能是导致体型多样性的原因。本研究可以提升西北太平洋海域的鱼类分类效果,为西北太平洋鱼类物种的可持续开发和有效资源管理提供科学依据。未来研究可以增加更多的物种和数量以便探究更加普适性的形态差异和分类效果。

    Abstract:

    Fish body morphology contains important ecological information and is a valuable feature for species identification and population classification. There are many kinds of fish in Northwest Pacific Ocean, making the study of fish biodiversity a significant challenge in the study of fish morphology. At present, the study of fish species identification by using fish body geometric morphometrics is relatively lacking, and the classification effect of different fish body parts morphology is necessary to be discussed. In order to understand the morphological structural diversity of important fish species in Northwest Pacific Ocean, and effectively improve the efficiency of fish species identification in this area. In this study, the morphologies variation of 485 tails of 26 species from 24 genera, 14 families and 8 orders in Northwest Pacific Ocean were constructed based on landmarks data and geometric morphometrics, and the taxonomic effects of different body morphological parameters on species recognition were evaluated. The results showed that there were significant differences in fish body morphology among different orders and species. In addition, Multiple regression analysis (MRA) detected allometry in some species. In terms of classification, and the body and torso shape could be better distinguished from different species. Studies have shown that fish species in Northwest Pacific Ocean have a variety of body shape structures, and the heterogeneity of the life history of different species and genetic factors may be the reasons for the body diversity. This study can improve the fish taxonomy in Northwest Pacific Ocean and provide a scientific basis for the sustainable development and effective resource management of fish species in Northwest Pacific Ocean. Future studies can add more species and numbers in order to explore more universal morphological differences and taxonomic effects.

    推荐文献
    张珍.甘肃农业大学学报,2003
    周玉惠.山地农业生物学报,2013
    黄静,于素亚.广东农业科学,2010
    曾晓丹,张盈娇,夏陈,王自鹏,曹阳.现代农业科技,2012
    吴阔,唐咏,王萍萍,陈丹,刘鹏举,裴雪亮.安徽农业科学,2007
    薛长晖.辽宁农业科学,2010
    李长春,姚国新,李国元,戴余军.湖北农业科学,2015
    王承志,吕士杰,芦晓静,徐俊杰,姜艳霞.安徽农业科学,2011
    吴锁连,康怀彬,李冬姣.安徽农业科学,2017
    数据来源
    + 关注本刊
    学者社区
    引证文献
    周垚卿,董静雯,何 强.食品安全质量检测学报,2019
    参考文献
    [1] HARLAY J, CHOU L, DE BODT C, et al. Biogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(2): 111-127.
    [2] Food and Agriculture Organization of the United Nations. Fishery and aquaculture statistics[M]. Rome: Food and Agriculture Organization of the United Nations, 2022.
    [3] TAMAKI K, HONZA E. Global tectionics and formation of marginal basins: role of the western Pacific[J]. Episodes, 1991, 14(3): 224-230.
    [4] TANG F H, YUE D D, XIONG M S, et al. Interpretation of Convention on the Conservation and Management of High Seas Fisheries Resources in the North Pacific Ocean and coping strategies from China oceanic fisheries[J]. Fishery Information & Strategy, 2016, 31(3): 210-217. 唐峰华, 岳冬冬, 熊敏思, 等. 《北太平洋公海渔业资源养护和管理公约》解读及中国远洋渔业应对策略[J]. 渔业信息与战略, 2016, 31(3): 210-217.
    [5] LIANG X H, WANG C C,LIU Y,et al.Fish diversity analysis of the Kuroshio-Oyashio confluence region in summer based on environmental DNA technology[J]. Journal of Shanghai Ocean University,2024,33(4):911-926. 梁绪虹,王丛丛,刘洋,等. 基于环境DNA技术的黑潮-亲潮交汇区夏季鱼类物种多样性分析[J]. 上海海洋大学学报,2024,33(4):911-926.
    [6] LIU S Y, ZHANG H, YANG C, et al. Differences in habitat distribution of Sardinops melanostictus and Scomber japonicus in the northwest Pacific based on a maximum entropy model[J]. Journal of Shanghai Ocean University, 2023, 32(4): 806-817. 刘思源, 张衡, 杨超, 等. 基于最大熵模型的西北太平洋远东拟沙丁鱼和日本鲭栖息地差异[J]. 上海海洋大学学报, 2023, 32(4): 806-817.
    [7] HUBBS C L, BAILEY R M. A revision of the black basses (Micropterus and Huro), with descriptions of four new forms[R]. Michigan: University of Michigan, 1940: 1-51.
    [8] BOOKSTEIN F L. Size and shape spaces for landmark data in two dimensions[J]. Statistical Science, 1986, 1(2): 181-222.
    [9] ROHLF F J, SLICE D. Extensions of the procrustes method for the optimal superimposition of landmarks[J]. Systematic Biology, 1990, 39(1): 40-59.
    [10] WANG C, FANG Z, CHEN X J. Advances in the application of bibliometrics-based geometric morphometrics in fisheries[J]. Marine Fisheries, 2022, 44(1): 112-128. 王超, 方舟, 陈新军. 基于文献计量的几何形态测量在渔业中的应用研究进展[J]. 海洋渔业, 2022, 44(1): 112-128.
    [11] SANTOS S R, PESSÔA L M, VIANNA M. Geometric morphometrics as a tool to identify species in multispecific flatfish landings in the Tropical Southwestern Atlantic[J]. Fisheries Research, 2019, 213: 190-195.
    [12] HOU G, LIU D D, FENG B, et al. Using landmark-based geometric morphometrics analysis to identify sagittal otolith of four Pennahia fish species[J]. Journal of Fishery Sciences of China, 2013, 20(6): 1293-1302. 侯刚, 刘丹丹, 冯波, 等. 基于地标点几何形态测量法识别北部湾4种白姑鱼矢耳石形态[J]. 中国水产科学, 2013, 20(6): 1293-1302.
    [13] IBÁÑEZ A L, GUERRA E, PACHECO-ALMANZAR E. Fish species identification using the rhombic squamation pattern[J]. Frontiers in Marine Science, 2020, 7: 211.
    [14] CHOI S W, YU H J, KIM J K. Comparative ontogeny and phylogenetic relationships of eight lizardfish species (Synodontidae) from the Northwest Pacific, with a focus on Trachinocephalus monophyly[J]. Journal of Fish Biology, 2024, 104(1): 284-303.
    [15] CHOLLET‐VILLALPANDO J G, GARCÍA‐RODRÍGUEZ F J, DE LA CRUZ‐AGÜERO J. Character variation in separate body regions of Gerreidae (Osteichthyes: Teleostei) fishes inferred from geometric morphometrics[J]. Journal of Fish Biology, 2024, 104(3): 723-736.
    [16] NELSON J S, GRANDE T C, WILSON M V H. Fishes of the world[M]. Hoboken: John Wiley & Sons, 2016.
    [17] SOTOLA V A, CRAIG C A, PFAFF P J, et al. Effect of preservation on fish morphology over time: implications for morphological studies[J]. PLoS One, 2019, 14(3): e0213915.
    [18] FRUCIANO C, SCHMIDT D, RAMÍREZ SANCHEZ M M, et al. Tissue preservation can affect geometric morphometric analyses: a case study using fish body shape[J]. Zoological Journal of the Linnean Society, 2020, 188(1): 148-162.
    [19] WANG C, FANG Z, CHEN X J. Beak morphology variation of Uroteuthis edulis based on geometric morphometrics[J]. Progress in Fishery Sciences, 2023, 44(1): 58-69. 王超, 方舟, 陈新军. 基于几何形态测量法的剑尖枪乌贼角质颚形态变化研究[J]. 渔业科学进展, 2023, 44(1): 58-69.
    [20] CHEN X J, LIU B L. Fishery resource biology[M]. Beijing: Science Press, 2017. 陈新军, 刘必林. 渔业资源生物学[M]. 北京: 科学出版社, 2017.
    [21] YANG D X,YU J,WANG C,et al. Growth regularity of Scomber japonicus based on geometric morphometrics in Northwest Pacific Ocean[J]. Journal of Shanghai Ocean University,2024,33(4):859-867. 杨德逍,俞骏,王超,等. 基于几何形态测量的西北太平洋日本鲭的个体生长规律[J]. 上海海洋大学学报,2024,33(4):859-867.
    [22] ROHLF F J. The tps series of software[J]. Hystrix, the Italian Journal of Mammalogy, 2015, 26(1): 9-12.
    [23] VISCOSI V, CARDINI A. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners[J]. PLoS One, 2011, 6(10): e25630.
    [24] FANG Z, CHEN X J, SU H, et al. Evaluation of stock variation and sexual dimorphism of beak shape of neon flying squid, Ommastrephes bartramii, based on geometric morphometrics[J]. Hydrobiologia, 2017, 784(1): 367-380.
    [25] ADAMS D C, OTÁROLA-CASTILLO E. Geomorph: an R package for the collection and analysis of geometric morphometric shape data[J]. Methods in Ecology and Evolution, 2013, 4(4): 393-399.
    [26] BAKEN E K, COLLYER M L, KALIONTZOPOULOU A, et al. geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience[J]. Methods in Ecology and Evolution, 2021, 12(12): 2355-2363.
    [27] CHEN X J, FANG Z, CHEN Y Y, et al. Application of geometric morphometry to aquatic organisms[M]. Beijing: Science Press, 2017. 陈新军, 方舟, 陈洋洋, 等. 几何形态测量学在水生生物中的应用[M]. 北京: 科学出版社, 2017.
    [28] LIU B L, GU X Y, WANG B Y, et al. Visualization of cephalopod beak pigmentation and its application to the classification of cephalopods[J]. Journal of Shanghai Ocean University, 2023, 32(4): 785-793. 刘必林, 顾心雨, 王冰妍, 等. 角质颚色素沉积可视化及其在头足类判别分类中的应用[J]. 上海海洋大学学报, 2023, 32(4): 785-793.
    [29] DWIVEDI A K, DE K. Role of morphometrics in fish diversity assessment: status, challenges and future prospects[J]. National Academy Science Letters, 2024, 47(2): 123-126.
    [30] ALÒ D, PIZARRO V, HABIT E. Fish body size influenced by multiple drivers[J]. Ecography, 2024, 2024(1): e06865.
    [31] EMMRICH M, PÉDRON S, BRUCET S, et al. Geographical patterns in the body‐size structure of European lake fish assemblages along abiotic and biotic gradients[J]. Journal of Biogeography, 2014, 41(12): 2221-2233.
    [32] AHTI P A, KUPARINEN A, UUSI-HEIKKILÄ S. Size does matter-the eco-evolutionary effects of changing body size in fish[J]. Environmental Reviews, 2020, 28(3): 311-324.
    [33] BEAUGRAND G, BRANDER K M, LINDLEY J A, et al. Plankton effect on cod recruitment in the North Sea[J]. Nature, 2003, 426(6967): 661-664.
    [34] HETZEL C, FORSYTHE P. Phenotypic plasticity of a generalist fish species resident to lotic environments: insights from the Great Lakes region[J]. Ecology and Evolution, 2023, 13(11): e10715.
    [35] ANAYA-GODÍNEZ E, SILVA‐SEGUNDO C A, LANDAETA M F, et al. Influence of oceanographic conditions on the body shape variability of Scomber japonicus larvae from the western coast of the Baja California Peninsula[J]. Fisheries Oceanography, 2022, 31(3): 225-237.
    [36] RIEDE K. Global register of migratory species: from global to regional scales: final report of the R&D-Projekt 80805081[M]. Bonn: Federal Agency for Nature Conservation, 2004.
    [37] HUNTER J R, KIMBRELL C A. Early life history of Pacific mackerel, Scomber japonicus[J]. Fishery Bulletin, 1980, 78(1): 89-101.
    [38] PÖRTNER H O, SCHULTE P M, WOOD C M, et al. Niche dimensions in fishes: an integrative view[J]. Physiological and Biochemical Zoology, 2010, 83(5): 808-826.
    [39] DE SCHEPPER N, VAN WASSENBERGH S, ADRIAENS D. Morphology of the jaw system in trichiurids: trade-offs between mouth closing and biting performance[J]. Zoological Journal of the Linnean Society, 2008, 152(4): 717-736.
    [40] KOBELKOWSKY A. Osteology of the sea mojarra, Diapterus auratus Ranzani (Teleostei: Gerreidae)[J]. Hidrobiológica, 2004, 14(1): 1-10.
    [41] CAO Y Y. Research on fish burst-coast swimming behavior based on computer vision[D]. Chongqing: Chongqing Jiaotong University, 2023. 曹誉尹. 基于计算机视觉的鱼类冲刺-滑行游泳行为研究[D]. 重庆: 重庆交通大学, 2023.
    [42] INGRAM T. Diversification of body shape in Sebastes rockfishes of the north-east Pacific[J]. Biological Journal of the Linnean Society, 2015, 116(4): 805-818.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
推荐阅读
Suggestions and countermeasures for the development of science and technology in china's distant-water fisheries 4.0
CHEN Xinjun et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Current status and prospects of research on the distribution of light fields for fish collection in light induced fisheries
WANG Weijie et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Rope throwing speed control of large drum intelligent fishing machine and its effect on albacore tuna fishing results
LIU Yuqing et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Design and experimentation of a mobile autonomous baiting device for shrimp and crab aquaculture
CUI Xiufang et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Feeding state classification of grass carp based on optical flow and improved rnn
LIU Shi-Jing et al., ACTA HYDROBIOLOGICA SINICA, 2022
Research on weighing bait at sea based on pso-bp neural network
LIN Huajian1 et al., FISHERY MODERNIZATION, 2025
An improved relative navigation algorithm of unscented particle filter based on genetic algorithm
QIU Qihan et al., FIRE CONTROL & COMMAND CONTROL, 2025
Quaternary ammonium salts: insights into synthesis and new directions in antibacterial applications
Zhou, Zhenyang et al., BIOCONJUGATE CHEMISTRY, 2023
Enhanced contour tracking: a time-varying internal model principle-based approach
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2025
Coordinated tracking control of the integrated wheel-end system based on generalized instantaneous steering center constraint
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025
Powered by
引用本文

王超,俞骏,刘必林,方舟.西北太平洋重要鱼种的形态参数识别与物种分类应用[J].上海海洋大学学报,2025,34(1):164-175.
WANG Chao, YU Jun, LIU Bilin, FANG Zhou. Morphological parameter identification and species classification of important fish species in Northwest Pacific Ocean[J]. Journal of Shanghai Ocean University,2025,34(1):164-175.

复制
分享
文章指标
  • 点击次数:335
  • 下载次数: 1201
  • HTML阅读次数: 1164
  • 引用次数: 0
历史
  • 收稿日期:2024-04-19
  • 最后修改日期:2024-05-31
  • 录用日期:2024-06-03
  • 在线发布日期: 2025-01-22
文章二维码
关闭