基于YOLOv8X和DIDSON的水域鱼类资源监测分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S932.4

基金项目:

上海城投原水项目(D-8006-24-0509 )


Monitoring and analysis of fish resources in waters based on YOLOv8X and DIDSON
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高水域鱼类资源监测的自动化程度和实时分析能力,结合YOLOv8X(You only look once version 8 - extra large)目标检测模型、ByteTrack(ByteTrack: a strong baseline for multi-object tracking)算法与双频识别声呐(Dual-frequency identification sonar,DIDSON)数据,开发了1种快速、准确的鱼类目标识别与计数方法。实验结果表明,YOLOv8X与ByteTrack联合方法与传统的Echoview软件识别精度接近(偏差率仅为1.36%),但处理时间显著减少(单条测线从约30 min减少至约3 min),表现出较强的实时处理能力和泛化性能。同时,通过重复实验验证了该方法的稳定性,确认其在不同场景中的可靠性。本研究方法与成果为水域鱼类资源的自动化监测提供了可靠的技术支持,可广泛地应用于大范围高频次的渔业资源监测与管理工作中。

    Abstract:

    In order to improve the automation and real-time analysis ability of fish resources monitoring in waters, this paper combines YOLOv8X(You only look once version 8 - Extra Large) target detection algorithm, ByteTrack(ByteTrack: a strong baseline for multi-object tracking)algorithm and DIDSON sonar(Dual-frequency identification sonar) data to develop a fast and accurate fish target recognition and counting method. The experimental results show that the combined method of YOLOv8X and ByteTrack is close to the traditional Echoview software recognition accuracy (the deviation rate is only 1.36%), but the processing time is significantly reduced ( the single line is reduced from approximate 30 minutes to approximate 3 minutes ), showing strong real-time processing ability and generalization performance. Meanwhile, the stability of the method is verified by repeated experiments, and its reliability in different scenarios is confirmed. The research methods and results of this paper provide reliable technical support for the automatic monitoring of fish resources in waters, and can be widely used in the monitoring and management of fishery resources in a wide range of high frequency.

    参考文献
    相似文献
    引证文献
引用本文

沈蔚,董世泓,刘梦骐,殷兆伟,钱恩泽,龚小玲.基于YOLOv8X和DIDSON的水域鱼类资源监测分析[J].上海海洋大学学报,2026,35(1):228-241.
SHEN Wei, DONG Shihong, LIU Mengqi, YIN Zhaowei, QIAN Enze, GONG Xiaoling. Monitoring and analysis of fish resources in waters based on YOLOv8X and DIDSON[J]. Journal of Shanghai Ocean University,2026,35(1):228-241.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-27
  • 最后修改日期:2025-04-18
  • 录用日期:2025-04-21
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
关闭