基于FC-TCN-GRU模型的凡纳滨对虾养殖水中氨氮和化学需氧量的预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S912

基金项目:

上海市现代农业产业技术体系建设项目(沪农科产字〔2022〕第5号)


Prediction of ammonia nitrogen and chemical oxygen demand in Litopenaeus vannamei aquaculture ponds based on the FC-TCN-GRU model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于2014—2018年及2021—2024年某水产养殖合作社凡纳滨对虾(Litopenaeus vannamei)养殖池塘的水质检测数据,选取总氮(TN)、总磷(TP)、活性磷(AP)、硝态氮(NO3--N)、亚硝态氮(NO2--N)、氨氮(TAN)、化学需氧量(COD)、温度(T)和pH等在内的关键水质参数,构建了基于时域卷积网络(Temporal convolutional network,TCN)和门控循环单元(Gate recurrent unit,GRU)的TAN和COD水质预测模型。首先搭建FC-TCN-GRU的混合模型,即采用TCN对数据特征进行提取和降维处理,再将处理后的数据输入GRU模型,最后通过全连接层(Fully connected layers,FC)映射为预测结果。对搭建好的FC-TCN-GRU模型进行评估,其绝对误差(MAE)、均方误差(MSE)和决定系数(R2)在对TAN预测中分别为0.255、0.089和0.861;在对COD的预测中分别为1.750、4.840和0.332。将模型与PCA-LSTM、基本LSTM和基本GRU模型对TAN和COD的预测结果进行比较,结果显示:FC-TCN-GRU模型对TAN和COD指标的预测精度优于其他3种模型,在TAN预测中表现出色,但对COD的预测效果尚有提升空间。

    Abstract:

    Based on water quality data from Litopenaeus vannamei aquaculture ponds in the same aquaculture farm during 2014-2018 and 2021-2024, this study selected key water quality parameters including total nitrogen (TN), total phosphorus (TP), active phosphorus (AP), nitrate nitrogen (NO-3-N), nitrite nitrogen (NO-2-N), total ammonia nitrogen (TAN), chemical oxygen demand (COD), temperature (T), and pH values to develop water quality prediction models for TAN and COD using temporal convolutional network (TCN) and gated recurrent unit (GRU). A hybrid FC-TCN-GRU model architecture was constructed, which employed TCN for feature extraction and dimensionality reduction of data features, fed the processed data into GRU, and finally maped the results through fully connected layers (FC) to generate predictions. Mean absolute error (MAE), mean squared error (MSE), and coefficient of determination (R2) values of the FC-TCN-GRU model for TAN prediction were 0.255, 0.089 and 0.861, respectively, while achieved 1.750, 4.840 and 0.332 for COD prediction. Compared with PCA-LSTM, basic LSTM and basic GRU models, the FC-TCN-GRU model showed better predictive accuracy for both TAN and COD prediction. The model performs superior in TAN prediction, but it still needs improvement in COD prediction.

    参考文献
    相似文献
    引证文献
引用本文

王智华,吴昊,周英娴,李桂娟,江敏.基于FC-TCN-GRU模型的凡纳滨对虾养殖水中氨氮和化学需氧量的预测[J].上海海洋大学学报,2026,35(1):105-118.
WANG Zhihua, WU Hao, ZHOU Yingxian, LI Guijuan, JIANG Min. Prediction of ammonia nitrogen and chemical oxygen demand in Litopenaeus vannamei aquaculture ponds based on the FC-TCN-GRU model[J]. Journal of Shanghai Ocean University,2026,35(1):105-118.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-28
  • 最后修改日期:2025-04-30
  • 录用日期:2025-05-08
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
关闭