DUIE-YOLO:一种基于图像增强的水下鱿鱼目标检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S951.2;TP183

基金项目:

国家重点研发计划(2023YFD2401302)


DUIE-YOLO: An image enhancement-based underwater squid target detection algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决水下图像因模糊和色偏导致的目标检测精度下降问题,提升复杂水下环境中鱿鱼检测的准确性和鲁棒性,本研究提出一种基于图像增强的水下鱿鱼检测算法DUIE-YOLO,采用“先增强后检测”的级联框架,由DUIE-Net增强模块和YOLOv8-HD检测模块组成。DUIE-Net模块通过颜色校正、多尺度特征融合、特征恢复与增强及去雾优化,显著提升图像质量;YOLOv8-HD检测模块结合FasterNet网络、小目标检测头、CoordAttention注意力机制及ShapeIoU损失函数,优化特征提取能力与小目标检测精度。实验结果表明,DUIE-YOLO相比原始YOLOv8n在Precision、Recall、F1-score和mAP等4个关键指标上分别提升4.2%、6.8%、5.7%和5.5%。联合实验结果显示,DUIE-Net与YOLOv8-HD的组合相比基线(Raw+YOLOv8n),mAP提升40.3%,Precision提升10.5%,Recall提升53%,F1-score提升31%,证明该算法具有显著的级联优化效果。研究表明,DUIE-YOLO通过图像增强与检测模块的协同优化,有效解决了水下图像质量差导致的检测性能下降问题。本研究为复杂水下环境中的目标识别提供了高精度的解决方案,对海洋生物监测与资源开发具有重要应用价值。

    Abstract:

    To address the decline in target detection accuracy caused by blur and color deviation in underwater images and to improve the accuracy and robustness of squid detection in complex underwater environments, this study proposes an underwater squid detection algorithm named DUIE-YOLO based on image enhancement. The algorithm adopts a cascaded framework of “enhance first, detect later” consisting of the DUIE-Net enhancement module and the YOLOv8-HD detection module. The DUIE-Net module significantly improves image quality through color correction, multi-scale feature fusion, feature restoration and enhancement, and dehazing optimization. The YOLOv8-HD detection module combines the FasterNet network, a small-object detection head, the CoordAttention mechanism, and the ShapeIoU loss function to optimize feature extraction and small-object detection accuracy. Experimental results show that DUIE-YOLO outperforms the original YOLOv8n in four key metrics: Precision, Recall, F1-score, and mAP, with improvements of 4.2%, 6.8%, 5.7% and 5.5%, respectively. Joint experiments demonstrate that the combination of DUIE-Net and YOLOv8-HD achieves a 40.3% increase in mAP, a 10.5% increase in Precision, a 53% increase in Recall, and a 31% increase in F1-score compared to the baseline (Raw+YOLOv8n), proving the algorithm's significant cascaded optimization effect. The study indicates that DUIE-YOLO effectively mitigates the performance degradation caused by poor underwater image quality through the synergistic optimization of image enhancement and detection modules. This research provides a high-precision solution for target recognition in complex underwater environments, offering significant application value for marine biological monitoring and resource development.

    参考文献
    相似文献
    引证文献
引用本文

曹莉凌,胡浩宇,曹守启. DUIE-YOLO:一种基于图像增强的水下鱿鱼目标检测算法[J].上海海洋大学学报,2026,35(1):254-269.
CAO Liling, HU Haoyu, CAO Shouqi. DUIE-YOLO: An image enhancement-based underwater squid target detection algorithm[J]. Journal of Shanghai Ocean University,2026,35(1):254-269.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-06
  • 最后修改日期:2025-05-14
  • 录用日期:2025-05-15
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
关闭